Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Data modelling of converters for the automation and monitoring of MTDC grids

Multi-terminal DC (MTDC) grids based on voltage source converters (VSCs) are a promising option to integrate the increasing share of generation from the distributed energy resources (DERs) both in the transmission and distribution grids. However, with the broader use of VSCs for the transmission and distribution grid, there is an absence of a standardised data model for the VSC. In this work, the authors propose an IEC 61850 based data model for VSCs and an existing IEC 61850 model is extended for the dual-active bridge (DAB) converter as an interlink between various DC terminals and the modular multilevel converter (MMC). Furthermore, a generic data modelling guideline is proposed for intelligent electronic devices (IEDs), which are responsible for the interoperability among converters in the MTDC grid. The implementation of the real-time monitoring system of a hybrid AC-DC MTDC grid with the proposed IED is presented as an exemplary case. Through experimental tests of this MTDC grid, it is shown that the proposed IED meets the latency requirements for P2 through P6 class of monitoring, protection, and control applications according to the IEC 61850 standard. The automation architecture presented in this work is also validated for interoperability within the MTDC grid.

References

    1. 1)
      • 23. IEC 61850-7-3 (Ed.2): ‘Communication networks and systems for power utility automation-part 7-3: basic communication structure-common data classes’, 2010.
    2. 2)
      • 12. Riccobono, A., Ferdowsi, M., Hu, J., et al: ‘Next generation automation architecture for dc smart homes’. 2016 IEEE Int. Energy Conf. (ENERGYCON), Leuven, Belgium, April 2016, pp. 16.
    3. 3)
      • 16. IEC 61850-5 (Ed.2): ‘Communication networks and systems for power utility automation – part 5: communication requirements for functions and device models’, 2013.
    4. 4)
      • 10. Ali, I., Hussain, S.M.S.: ‘Communication design for energy management automation in microgrid’, IEEE Trans. Smart Grid, 2018, 9, pp. 20552064.
    5. 5)
      • 25. Vrana, T.K., Beerten, J., Belmans, R., et al: ‘A classification of dc node voltage control methods for HVDC grids’, Electr. Power Syst. Res., 2013, 103, pp. 137144.
    6. 6)
      • 13. Marquardt, R.: ‘Modular multilevel converter: an universal concept for HVDC-networks and extended DC-bus-applications’. The 2010 Int. Power Electronics Conf. – ECCE ASIA, Sapporo, Japan, June 2010, pp. 502507.
    7. 7)
      • 5. Wang, W., Li, Y., Cao, Y., et al: ‘Adaptive droop control of VSC-MTDC system for frequency support and power sharing’, IEEE Trans. Power Syst., 2018, 33, pp. 12641274.
    8. 8)
      • 26. Beerten, J., Belmans, R.: ‘Modeling and control of multi-terminal VSC HVDC systems’, Energy Procedia, 2012, 24, pp. 123130. Selected papers from Deep Sea OffshoreWind RD Conference, Trondheim, Norway, 19–20 January 2012.
    9. 9)
      • 4. Kangwa, N.M., Venugopal, C., Davidson, I.E.: ‘A review of the performance of VSC-HVDC and MTDC systems’. 2017 IEEE PES PowerAfrica, Accra, Ghana, June 2017, pp. 267273.
    10. 10)
      • 24. Semikron: ‘3L NPC inverter SKiiP28MLI07E3V1’, 2018.
    11. 11)
      • 29. Kheraluwala, M.H., Gasgoigne, R.W., Divan, D.M., et al: ‘Performance characterization of a high power dual active bridge DC/DC converter’. Conf. Record of the 1990 IEEE Industry Applications Society Annual Meeting, Seattle, USA, October 1990, vol. 2, pp. 12671273.
    12. 12)
      • 9. Pei, W., Deng, W., Shen, Z., et al: ‘Operation of battery energy storage system using extensional information model based on IEC 61850 for micro-grids’, IET Gener. Transm. Distrib., 2016, 10, (4), pp. 849861.
    13. 13)
      • 8. IEC 61850-7-420 (Ed.1): ‘Communication networks and systems for power utility automation – part 7-420: basic communication structure – distributed energy resources logical nodes’, 2009.
    14. 14)
      • 22. Wang, W.: ‘Droop control modelling and analysis of multi-terminal HVDC for offshore wind farms’. IET Conf. Proc., Birmingham, UK, January 2012, pp. 2121(1).
    15. 15)
      • 2. Gellings, C.W.: ‘A globe spanning super grid’, IEEE Spectr., 2015, 52, pp. 4854.
    16. 16)
      • 28. Rinaldi, S., Ferrari, P., Loda, M.: ‘Synchronizing low-cost probes for IEC61850 transfer time estimation’. 2016 IEEE Int. Symp. on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS), Stockholm, Sweden, September 2016, pp. 16.
    17. 17)
      • 20. Rouzbehi, K., Miranian, A., Candela, J.I., et al: ‘A generalized voltage droop strategy for control of multiterminal DC grids’, IEEE Trans. Ind. Appl., 2015, 51, pp. 607618.
    18. 18)
      • 6. Gottschalk, M., Uslar, M., Delfs, C.: ‘The smart grid architecture model – SGAM’, in Gottschalk, M., Uslar, M., Delfs, C. (Eds.): ‘The use case and smart grid architecture model approach: the IEC 62559-2 use case template and the SGAM applied in various domains’, SpringerBriefs in Energy (Springer International Publishing, Cham, 2017), pp. 4161.
    19. 19)
      • 19. Hertem, D.V., Gomis-Bellmunt, O., Liang, J.: ‘HVDC grids for transmission of electrical energy: offshore grids and a future’ (John Wiley Sons, Hoboken, 2016), ch. 15.
    20. 20)
      • 15. IEC 61850-10 (Ed.2): ‘Communication networks and systems for power utility automation – part 10- conformance testing’, 2012.
    21. 21)
      • 7. Sharma, M., Rudolph, T.: ‘A rule-driven architecture to address interoperability in an IEC 61850 series-based power utility automation system’. ISGW 2017: Compendium of Technical Papers, New Delhi, India, March 2017, pp. 93101.
    22. 22)
      • 14. Tan, J., Green, V., Ciufo, J.: ‘Testing IEC 61850 based multi-vendor substation automation systems for interoperability’. 2009 IEEE/PES Power Systems Conf. and Exposition, Seattle, USA, March 2009, pp. 15.
    23. 23)
      • 17. Angioni, A., Lu, S., Hooshyar, H., et al: ‘A distributed automation architecture for distribution networks, from design to implementation’, Sustain. Energy Grids Netw., 2018, 15, pp. 313.
    24. 24)
      • 3. Medow | multi-terminal DC grid for offshore wind’.
    25. 25)
      • 27. Gonzalez-Redondo, M.J., Moreno-Munoz, A., Pallares-Lopez, V., et al: ‘Influence of data-related factors on the use of IEC 61850 for power utility automation’, Electr. Power Syst. Res., 2016, 133, pp. 269280.
    26. 26)
      • 18. Ma, Y., Hu, X., Yin, H., et al: ‘Real-time control and operation for a flexible microgrid with dynamic boundary’. 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, USA, September 2018, pp. 51585163.
    27. 27)
      • 1. Dong, H., Xu, Z., Song, P., et al: ‘Optimized power redistribution of offshore wind farms integrated VSC-MTDC transmissions after onshore converter outage’, IEEE Trans. Ind. Electron., 2017, 64, pp. 89488958.
    28. 28)
      • 11. Joebges, P., Hu, J., Doncker, R.W.D.: ‘Design method and efficiency analysis of a dab converter for PV integration in DC grids’. 2016 IEEE 2nd Annual Southern Power Electronics Conf. (SPEC), Auckland, New Zealand, December 2016, pp. 16.
    29. 29)
      • 21. Zhou, T., Francois, B.: ‘Energy management and power control of a hybrid active wind generator for distributed power generation and grid integration’, IEEE Trans. Ind. Electron., 2011, 58, pp. 95104.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2018.0170
Loading

Related content

content/journals/10.1049/iet-stg.2018.0170
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address