Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Fault detection in distribution networks in presence of distributed generations using a data mining–driven wavelet transform

Here, a data mining–driven scheme based on discrete wavelet transform (DWT) is proposed for high impedance fault (HIF) detection in active distribution networks. Correlation between the phase current signal and the related details of the current wavelet transform is presented as a new index for HIF detection. The proposed HIF detection method is implemented in two subsequent stages. In the first stage, the most important features for HIF detection are extracted using support vector machine (SVM) and decision tree (DT). The parameters of SVM are optimised using the genetic algorithm (GA) over the input scenarios. In second stage, SVM is utilised to classify the input data. The efficiency of the utilised SVM-based classifier is compared with a probabilistic neural network (PNN). A comprehensive list of scenarios including load switching, inrush current, solid short-circuit faults, HIF faults in the presence of harmonic loads is generated. The performance of the proposed algorithm is investigated for two active distribution networks including IEEE 13-Bus and IEEE 34-Bus systems.

References

    1. 1)
      • 11. Michalik, M.: ‘High-impedance fault detection in distribution networks with use of wavelet-based algorithm’, IEEE Trans. Power Deliv., 2006, 21, (4), pp. 17931802.
    2. 2)
      • 16. Sheng, Y., Rovnyak, S.M.: ‘Decision tree-based methodology for high impedance fault detection’, IEEE Trans. Power Deliv., 2004, 19, (2), pp. 533536.
    3. 3)
      • 10. Lai, T.M.: ‘High-impedance fault detection using discrete wavelet transform and frequency range and RMS conversion’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 397407.
    4. 4)
      • 33. Grabczewski, K.: ‘Feature selection with decision tree criterion’, 2005.
    5. 5)
      • 19. Haghifam, M., Sedighi, A., Malik, O.: ‘Development of a fuzzy inference system based on genetic algorithm for high-impedance fault detection’, IEE Proc., Gener. Transm. Distrib., 2006, 153, (3),p.359.
    6. 6)
      • 2. Carr, J.: ‘Detection of high impedance faults on multi-grounded primary distribution systems’, IEEE Trans. Power Appar. Syst., 1981, PAS-100, (4), pp. 20082016.
    7. 7)
      • 1. Masa, A.V., Werben, S., Maun, J.C.: ‘Incorporation of data-mining in protection technology for high impedance fault detection’. 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, 2012, pp. 18.
    8. 8)
      • 30. Huang, C.-L., Wang, C.-J.: ‘A GA-based feature selection and parameters optimization for support vector machines’, Expert Syst. Appl., 2006, 31, (2), pp. 231240.
    9. 9)
      • 21. Sarlak, M., Mohammad Shahrtash, S.: ‘High-impedance faulted branch identification using magnetic-field signature analysis’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 6774.
    10. 10)
      • 18. Eissa, M.M., Sowilam, G.M.A., Sharaf, A.M.: ‘A new protection detection technique for high impedance fault using neural network’. 2006 Large Engineering Systems Conf. on Power Engineering, Halifax, USA, 2006.
    11. 11)
      • 9. Huang, S.-J., Hsieh, C.-T.: ‘High-impedance fault detection utilizing aMorlet wavelet transform approach’, IEEE Trans. Power Deliv., 1999, 14, (4), pp. 14011410.
    12. 12)
      • 12. Elkalashy, N.I.: ‘Modeling and experimental verification of high impedance arcing fault in medium voltage networks’, IEEE Trans. Dielectr. Electr. Insul., 2007, 14, (2), pp. 375383.
    13. 13)
      • 26. Santos, W.C., Lopes, F.V., Brito, N.S.D., et al: ‘High-impedance fault identification on distribution networks’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 2332.
    14. 14)
      • 22. Ghaderi, A.: ‘High-impedance fault detection in the distribution network using the time-frequency-based algorithm’, IEEE Trans. Power Deliv., 2015, 30, (3), pp. 12601268.
    15. 15)
      • 7. Lien, K.-Y.: ‘Energy variance criterion and threshold tuning scheme for high impedance fault detection’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 810817.
    16. 16)
      • 6. Lee, I.: ‘High-impedance fault detection using third-harmonic current’. Final report. No. EPRI-EL-2430, Hughes Aircraft Co., Malibu, CA, USA, 1982.
    17. 17)
      • 34. Sugumaran, V., Muralidharan, V., Ramachandran, K.I.: ‘Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing’, Mech. Syst. Signal Process., 2007, 21, (2), pp. 930942.
    18. 18)
      • 25. Sarwagya, K., De, S., Nayak, P.K.: ‘High-impedance fault detection in electrical power distribution systems using moving sum approach’, IET Sci. Meas. Technol., 2018, 12, (1), pp. 18.
    19. 19)
      • 27. Graps, A.: ‘An introduction to wavelets’, IEEE Comput. Sci. Eng., 1995, 2, (2), pp. 5061.
    20. 20)
      • 3. Lee, R.E., Bishop, M.T.: ‘Performance testing of the ratio ground relay on a four-wire distribution feeder’, IEEE Trans. Power Appar. Syst., 1983, 9, pp. 29432949.
    21. 21)
      • 24. Kavi, M., Mishra, Y., Vilathgamuwa, M.D.: ‘High-impedance fault detection and classification in power system distribution networks using morphological fault detector algorithm’, IET Gener. Transm. Distrib., 2018, 12, (15), pp. 36993710.
    22. 22)
      • 17. Michalik, M.: ‘New ANN-based algorithms for detecting HIFs in multigrounded MV networks’, IEEE Trans. Power Deliv., 2008, 23, (1), pp. 5866.
    23. 23)
      • 14. Benner, C.L., Don Russell, B.: ‘Practical high-impedance fault detection on distribution feeders’, IEEE Trans. Ind. Appl., 1997, 33, (3), pp. 635640.
    24. 24)
      • 5. Mamishev, A.V., Don Russell, B., Benner, C.L.: ‘Analysis of high impedance faults using fractal techniques’. Proc. of Power Industry Computer Application Conf., Salt Lake City, USA, 1995.
    25. 25)
      • 15. Girgis, A.A., Chang, W., Makram, E.B.: ‘Analysis of high-impedance fault generated signals using a Kalman filtering approach’, IEEE Trans. Power Deliv., 1990, 5, (4), pp. 17141724.
    26. 26)
      • 8. Russell, B.D.: ‘Detection of arcing faults on distribution feeders’. Final Report, Texas A&M Univ., College Station, Research Foundation, 1982.
    27. 27)
      • 4. Sultan, A.F., Swift, G.W., Fedirchuk, D.J.: ‘Detecting arcing downed-wires using fault current flicker and half-cycle asymmetry’, IEEE Trans. Power Deliv., 1994, 9, (1), pp. 461470.
    28. 28)
      • 13. Samantaray, S.R., Panigrahi, B.K., Dash, P.K.: ‘High impedance fault detection in power distribution networks using time-frequency transform and probabilistic neural network’, IET Gener. Transm. Distrib., 2008, 2, (2), pp. 261270.
    29. 29)
      • 28. Akay, M.F.: ‘Support vector machines combined with feature selection for breast cancer diagnosis’, Expert Syst. Appl., 2009, 36, (2), pp. 32403247.
    30. 30)
      • 31. Distribution Test Feeders: ‘IEEE PES distribution system analysis subcommittee’, 2011. Available at http://www.ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html.
    31. 31)
      • 20. Sarlak, M., Shahrtash, S.M.: ‘High impedance fault detection in distribution networks using support vector machines based on wavelet transform’. IEEE Canada Electric Power Conf., EPEC 2008, Vancouver, Canada, 2008.
    32. 32)
      • 32. Emanuel, A.E: ‘High impedance fault arcing on sandy soil in 15 kV distribution feeders: contributions to the evaluation of the low frequency spectrum’, IEEE Trans. Power Deliv., 1990, 5, (2), pp. 676686.
    33. 33)
      • 23. Chakraborty, S., Das, S.: ‘Application of smart meters in high impedance fault detection on distribution systems’, IEEE Trans. Smart Grid, doi: 10.1109/TSG.2018.2828414.
    34. 34)
      • 29. Burges, C.J.C: ‘A tutorial on support vector machines for pattern recognition’, Data Min. Knowl. Discov., 1998, 2, (2), pp. 121167.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2018.0158
Loading

Related content

content/journals/10.1049/iet-stg.2018.0158
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address