http://iet.metastore.ingenta.com
1887

access icon openaccess Fault detection in distribution networks in presence of distributed generations using a data mining–driven wavelet transform

Loading full text...

Full text loading...

/deliver/fulltext/iet-stg/2/2/IET-STG.2018.0158.html;jsessionid=5h1epe8t3lo7p.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-stg.2018.0158&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Masa, A.V., Werben, S., Maun, J.C.: ‘Incorporation of data-mining in protection technology for high impedance fault detection’. 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, 2012, pp. 18.
    2. 2)
      • 2. Carr, J.: ‘Detection of high impedance faults on multi-grounded primary distribution systems’, IEEE Trans. Power Appar. Syst., 1981, PAS-100, (4), pp. 20082016.
    3. 3)
      • 3. Lee, R.E., Bishop, M.T.: ‘Performance testing of the ratio ground relay on a four-wire distribution feeder’, IEEE Trans. Power Appar. Syst., 1983, 9, pp. 29432949.
    4. 4)
      • 4. Sultan, A.F., Swift, G.W., Fedirchuk, D.J.: ‘Detecting arcing downed-wires using fault current flicker and half-cycle asymmetry’, IEEE Trans. Power Deliv., 1994, 9, (1), pp. 461470.
    5. 5)
      • 5. Mamishev, A.V., Don Russell, B., Benner, C.L.: ‘Analysis of high impedance faults using fractal techniques’. Proc. of Power Industry Computer Application Conf., Salt Lake City, USA, 1995.
    6. 6)
      • 6. Lee, I.: ‘High-impedance fault detection using third-harmonic current’. Final report. No. EPRI-EL-2430, Hughes Aircraft Co., Malibu, CA, USA, 1982.
    7. 7)
      • 7. Lien, K.-Y.: ‘Energy variance criterion and threshold tuning scheme for high impedance fault detection’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 810817.
    8. 8)
      • 8. Russell, B.D.: ‘Detection of arcing faults on distribution feeders’. Final Report, Texas A&M Univ., College Station, Research Foundation, 1982.
    9. 9)
      • 9. Huang, S.-J., Hsieh, C.-T.: ‘High-impedance fault detection utilizing aMorlet wavelet transform approach’, IEEE Trans. Power Deliv., 1999, 14, (4), pp. 14011410.
    10. 10)
      • 10. Lai, T.M.: ‘High-impedance fault detection using discrete wavelet transform and frequency range and RMS conversion’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 397407.
    11. 11)
      • 11. Michalik, M.: ‘High-impedance fault detection in distribution networks with use of wavelet-based algorithm’, IEEE Trans. Power Deliv., 2006, 21, (4), pp. 17931802.
    12. 12)
      • 12. Elkalashy, N.I.: ‘Modeling and experimental verification of high impedance arcing fault in medium voltage networks’, IEEE Trans. Dielectr. Electr. Insul., 2007, 14, (2), pp. 375383.
    13. 13)
      • 13. Samantaray, S.R., Panigrahi, B.K., Dash, P.K.: ‘High impedance fault detection in power distribution networks using time-frequency transform and probabilistic neural network’, IET Gener. Transm. Distrib., 2008, 2, (2), pp. 261270.
    14. 14)
      • 14. Benner, C.L., Don Russell, B.: ‘Practical high-impedance fault detection on distribution feeders’, IEEE Trans. Ind. Appl., 1997, 33, (3), pp. 635640.
    15. 15)
      • 15. Girgis, A.A., Chang, W., Makram, E.B.: ‘Analysis of high-impedance fault generated signals using a Kalman filtering approach’, IEEE Trans. Power Deliv., 1990, 5, (4), pp. 17141724.
    16. 16)
      • 16. Sheng, Y., Rovnyak, S.M.: ‘Decision tree-based methodology for high impedance fault detection’, IEEE Trans. Power Deliv., 2004, 19, (2), pp. 533536.
    17. 17)
      • 17. Michalik, M.: ‘New ANN-based algorithms for detecting HIFs in multigrounded MV networks’, IEEE Trans. Power Deliv., 2008, 23, (1), pp. 5866.
    18. 18)
      • 18. Eissa, M.M., Sowilam, G.M.A., Sharaf, A.M.: ‘A new protection detection technique for high impedance fault using neural network’. 2006 Large Engineering Systems Conf. on Power Engineering, Halifax, USA, 2006.
    19. 19)
      • 19. Haghifam, M., Sedighi, A., Malik, O.: ‘Development of a fuzzy inference system based on genetic algorithm for high-impedance fault detection’, IEE Proc., Gener. Transm. Distrib., 2006, 153, (3),p.359.
    20. 20)
      • 20. Sarlak, M., Shahrtash, S.M.: ‘High impedance fault detection in distribution networks using support vector machines based on wavelet transform’. IEEE Canada Electric Power Conf., EPEC 2008, Vancouver, Canada, 2008.
    21. 21)
      • 21. Sarlak, M., Mohammad Shahrtash, S.: ‘High-impedance faulted branch identification using magnetic-field signature analysis’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 6774.
    22. 22)
      • 22. Ghaderi, A.: ‘High-impedance fault detection in the distribution network using the time-frequency-based algorithm’, IEEE Trans. Power Deliv., 2015, 30, (3), pp. 12601268.
    23. 23)
      • 23. Chakraborty, S., Das, S.: ‘Application of smart meters in high impedance fault detection on distribution systems’, IEEE Trans. Smart Grid, doi: 10.1109/TSG.2018.2828414.
    24. 24)
      • 24. Kavi, M., Mishra, Y., Vilathgamuwa, M.D.: ‘High-impedance fault detection and classification in power system distribution networks using morphological fault detector algorithm’, IET Gener. Transm. Distrib., 2018, 12, (15), pp. 36993710.
    25. 25)
      • 25. Sarwagya, K., De, S., Nayak, P.K.: ‘High-impedance fault detection in electrical power distribution systems using moving sum approach’, IET Sci. Meas. Technol., 2018, 12, (1), pp. 18.
    26. 26)
      • 26. Santos, W.C., Lopes, F.V., Brito, N.S.D., et al: ‘High-impedance fault identification on distribution networks’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 2332.
    27. 27)
      • 27. Graps, A.: ‘An introduction to wavelets’, IEEE Comput. Sci. Eng., 1995, 2, (2), pp. 5061.
    28. 28)
      • 28. Akay, M.F.: ‘Support vector machines combined with feature selection for breast cancer diagnosis’, Expert Syst. Appl., 2009, 36, (2), pp. 32403247.
    29. 29)
      • 29. Burges, C.J.C: ‘A tutorial on support vector machines for pattern recognition’, Data Min. Knowl. Discov., 1998, 2, (2), pp. 121167.
    30. 30)
      • 30. Huang, C.-L., Wang, C.-J.: ‘A GA-based feature selection and parameters optimization for support vector machines’, Expert Syst. Appl., 2006, 31, (2), pp. 231240.
    31. 31)
      • 31. Distribution Test Feeders: ‘IEEE PES distribution system analysis subcommittee’, 2011. Available at http://www.ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html.
    32. 32)
      • 32. Emanuel, A.E: ‘High impedance fault arcing on sandy soil in 15 kV distribution feeders: contributions to the evaluation of the low frequency spectrum’, IEEE Trans. Power Deliv., 1990, 5, (2), pp. 676686.
    33. 33)
      • 33. Grabczewski, K.: ‘Feature selection with decision tree criterion’, 2005.
    34. 34)
      • 34. Sugumaran, V., Muralidharan, V., Ramachandran, K.I.: ‘Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing’, Mech. Syst. Signal Process., 2007, 21, (2), pp. 930942.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2018.0158
Loading

Related content

content/journals/10.1049/iet-stg.2018.0158
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address