http://iet.metastore.ingenta.com
1887

access icon openaccess Optimal DG integration and network reconfiguration in microgrid system with realistic time varying load model using hybrid optimisation

Loading full text...

Full text loading...

/deliver/fulltext/iet-stg/2/2/IET-STG.2018.0146.html;jsessionid=5t3f0tmmc7ksp.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-stg.2018.0146&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Ackermann, T., Knyazkin, V.: ‘Interaction between distributed generation and the distribution network: operation aspects’. IEEE/PES Transmission and Distribution Conf. and Exhibition, 2002, pp. 13571362.
    2. 2)
      • 2. Mohandas, N., Balamurugan, R., Lakshminarasimman, L.: ‘Optimal location and sizing of real power DG units to improve the voltage stability in the distribution system using ABC algorithm united with chaos’, Int. J. Electr. Power Energy Syst., 2015, 66, pp. 4152.
    3. 3)
      • 3. Mendez Quezada, V.H., Rivier Abbad, J., Gomez San Roman, T.: ‘Assessment of energy distribution losses for increasing penetration of distributed generation’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 533540.
    4. 4)
      • 4. Oureilidis, K.O., Bakirtzis, E.A., Demoulias, C.S.: ‘Frequency-based control of islanded microgrid with renewable energy sources and energy storage’, J. Mod. Power Syst. Clean Energy, 2016, 4, (1), pp. 5462.
    5. 5)
      • 5. Pecas Lopes, J.A., Moreira, C.L., Madureira, A.G.: ‘Defining control strategies for microgrids islanded operation’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 916924.
    6. 6)
      • 6. Sultana, S., Roy, P.K.: ‘Multi-objective quasi-oppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 534545.
    7. 7)
      • 7. Chithra Devi, S.A., Lakshminarasimman, L., Balamurugan, R.: ‘Stud Krill herd algorithm for multiple DG placement and sizing in a radial distribution system’, Int. J. Eng. Sci. Technol., 2017, 20, pp. 748759.
    8. 8)
      • 8. Kumawat, M., Gupta, N., Jain, N., et al: ‘Swarm-intelligence-based optimal planning of distributed generators in distribution network for minimizing energy loss’, Electr. Power Compon. Syst., 2017, 45, (6), pp. 589600.
    9. 9)
      • 9. Dixit, M., Kundu, P., Jariwala, H. R.: ‘Incorporation of distributed generation and shunt capacitor in radial distribution system for techno-economic benefits’, Eng. Sci. Technol., 2017, 20, (2), pp. 482493.
    10. 10)
      • 10. Peesapati, R., Yadav, V. K., Kumar, N.: ‘Flower pollination algorithm based multi-objective congestion management considering optimal capacities of distributed generations’, Energy, 2018, 147, pp. 980994.
    11. 11)
      • 11. Francisco, C.R.C., da Silva, I.C.Jr., Dias, B.H., et al: ‘Optimal distributed generation allocation using a new metaheuristic’, J. Control Autom. Electr. Syst., 2018, 29, (1), pp. 9198.
    12. 12)
      • 12. Subramanyam, T.C., Tulasi Ram, S.S., Subrahmanyam, J.B.V.: ‘Dual stage approach for optimal sizing and siting of fuel cell in distributed generation systems’, Comput. Electr. Eng., 2018, 69, pp. 676689.
    13. 13)
      • 13. Senthil Kumar, J., Charles Raja, S., Jeslin Drusila Nesamalar, J., et al: ‘Optimizing renewable based generations in AC/DC microgrid system using hybrid Nelder–Mead – Cuckoo search algorithm’, Energy, 2018, 158, pp. 204215.
    14. 14)
      • 14. Ali, E.S., Abd Elazim, S.M., Abdelaziz, A.Y.: ‘Optimal allocation and sizing of renewable distributed generation using ant lion optimization algorithm’, Electr. Eng., 2018, 100, (1), pp. 99109.
    15. 15)
      • 15. Rajendran, A., Narayanan, K.: ‘Optimal multiple installation of DG and capacitor for energy loss reduction and loadability enhancement in radial distribution network using hybrid WIPSO–GSA algorithm’, Int. J. Ambient Energy, 2018, doi: 10.1080/01430750.2018.1451371.
    16. 16)
      • 16. Vahid-Pakdel, M.J., Mohammadi-ivatloo, B.: ‘Probabilistic assessment of wind turbine impact on distribution networks using linearized power flow formulation’, Electr. Power Syst. Res., 2018, 162, pp. 109117.
    17. 17)
      • 17. Suresh, M.C.V., Belwin, E. J.: ‘Optimal DG placement for benefit maximization in distribution networks by using Dragonfly algorithm’, Renewables, 2018, 5, (4), pp. 18.
    18. 18)
      • 18. Sattarpour, T., Nazarpour, D., Golshannavaz, S., et al: ‘A multi-objective hybrid GA and TOPSIS approach for sizing and siting of DG and RTU in smart distribution grids’, J. Ambient Intell. Hum. Comput., 2018, 9, (1), pp. 105122.
    19. 19)
      • 19. Quadri, I. A., Bhowmick, S., Joshi, D.: ‘A comprehensive technique for optimal allocation of distributed energy resources in radial distribution systems’, Appl. Energy, 2018, 211, pp. 12451260.
    20. 20)
      • 20. Barik, S., Das, D.: ‘Determining the sizes of renewable DGs considering seasonal variation of generation and load and their impact on system load growth’, IET Renew. Power Gener., 2018, 12, (10), pp. 11011110.
    21. 21)
      • 21. Sanjay, R., Jayabarathi, T., Raghunathan, T., et al: ‘Optimal allocation of distributed generation using hybrid grey wolf optimizer’, IEEE Access, 2017, 5, pp. 1480714818.
    22. 22)
      • 22. Hatziargyriou, N.D., Karakatsanis, T.S., Papadopoulos, M.: ‘Probabilistic load flow in distribution systems containing dispersed wind power generation’, IEEE Trans. Power Syst., 1993, 8, (1), pp. 159165.
    23. 23)
      • 23. Martin, D., Zhang, W., Chan, J., et al: ‘A comparison of Gumbel and Weibull statistical models to estimate wind speed for wind power generation’. Power Engineering Conf. (AUPEC), 2014, pp. 16.
    24. 24)
      • 24. El-Khattam, W., Hegazy, Y.G., Salama, M.M.A.: ‘Stochastic power flow analysis of electrical distributed generation systems’. IEEE Power Engineering Society General Meeting, 2003, pp. 11411144.
    25. 25)
      • 25. Maya, K.N., Jasmin, E.A.: ‘Optimal integration of distributed generation (DG) resources in unbalanced distribution system considering uncertainty modelling’, Int. Trans. Electr. Energy Syst., 2017, 27, (1), pp. 116.
    26. 26)
      • 26. Soroudi, A., Aien, M., Ehsan, M.: ‘A probabilistic modeling of photo voltaic modules and wind power generation impact on distribution networks’, IEEE Syst. J., 2012, 6, (2), pp. 254259.
    27. 27)
      • 27. Villanueva, D., Pazos, J. L., Feijóo, A.: ‘Probabilistic load flow including wind power generation’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 16591667.
    28. 28)
      • 28. Atwa, Y.M., El-Saadany, E.F., Salama, M.M.A., et al: ‘Optimal renewable resources mix for distribution system energy loss minimization’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 360370.
    29. 29)
      • 29. Kanwar, N., Gupta, N., Niazi, K.R., et al: ‘Optimal distributed resource planning for microgrids under uncertain environment. IET Renew. Power Gener., 2018, 12, (2), pp. 244251.
    30. 30)
      • 30. Alavi, S. A., Ahmadian, A., Aliakbar-Golkar, M.: ‘Optimal probabilistic energy management in a typical micro-grid based-on robust optimization and point estimate method’, Energy Convers. Manage., 2015, 95, pp. 314325.
    31. 31)
      • 31. Yang, H., Pan, H., Luo, F., et al: ‘Operational planning of electric vehicles for balancing wind power and load fluctuations in a microgrid’, IEEE Trans. Sustain. Energy, 2017, 8, (2), pp. 592604.
    32. 32)
      • 32. Li, Y., Fan, X., Cai, Z., et al: ‘Optimal active power dispatching of microgrid and distribution network based on model predictive control’, Tsinghua Sci. Technol., 2018, 23, (3), pp. 266276.
    33. 33)
      • 33. Kanchev, H., Colas, F., Lazarov, V., et al: ‘Emission reduction and economical optimization of an urban microgrid operation including dispatched PV-based active generators’, IEEE Trans. Sustain. Energy, 2014, 5, (4), pp. 13971405.
    34. 34)
      • 34. Levron, Y., Beck, Y., Katzir, L., et al: ‘Real-time reactive power distribution in microgrids by dynamic programing’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 530539.
    35. 35)
      • 35. Abdelaziz, M.: ‘Distribution network reconfiguration using a genetic algorithm with varying population size’, Electr. Power Syst. Res., 2017, 142, pp. 911.
    36. 36)
      • 36. Duan, D.L., Ling, X.D., Wu, X.Y., et al: ‘Reconfiguration of distribution network for loss reduction and reliability improvement based on an enhanced genetic algorithm’, Electr. Power Energy Syst., 2015, 64, pp. 8895.
    37. 37)
      • 37. Niknam, T., Fard, A.K., Seifi, A.: ‘Distribution feeder reconfiguration considering fuel cell/wind/photovoltaic power plants’, Renew. Energy, 2012, 37, pp. 213225.
    38. 38)
      • 38. Teimourzadeh, S., Zare, K.: ‘Application of binary group search optimization to distribution network reconfiguration’, Electr. Power Energy Syst., 2014, 62, pp. 461468.
    39. 39)
      • 39. Asrari, A., Lotfifard, S., Payam, M.S.: ‘Pareto dominance-based multiobjective optimization method for distribution network reconfiguration’, IEEE Trans. Smart Grid, 2016, 7, pp. 14011410.
    40. 40)
      • 40. Vitorino, R.M., Jorge, H.M., Neves, L.P.: ‘Multi-objective optimization using NSGA-II for power distribution system reconfiguration’, Int. Trans. Electr. Energy Syst., 2015, 25, pp. 3853.
    41. 41)
      • 41. Alonso, F.R., Oliveira, D.Q., de Souza, A.Z.: ‘Artificial immune systems optimization approach for multiobjective distribution system reconfiguration’, IEEE Trans. Power Syst., 2015, 30, pp. 840847.
    42. 42)
      • 42. Baran, M.E., Wu, F.F.: ‘Network reconfiguration in distribution systems for loss reduction and load balancing’, IEEE Trans. Power Deliv., 1989, 4, pp. 14011407.
    43. 43)
      • 43. Xiaodan, Y., Hongjie, J., Chengshan, W., et al: ‘Network reconfiguration for distribution system with micro-grids’. Int. Conf. on Sustainable Power Generation and Supply, 2009, pp. 14.
    44. 44)
      • 44. Shariatzadeh, F., Vellaithurai, C., Biswas, S., et al: ‘Real time implementation of intelligent reconfiguration algorithm for microgrid’. IEEE PES T&D Conf. and Exposition, 2014, pp. 11.
    45. 45)
      • 45. Dheer, D. K., Kulkarni, O. V., Doolla, S., et al: ‘Effect of reconfiguration and meshed networks on the small-signal stability margin of droop-based islanded microgrids’, IEEE Trans. Ind. Appl., 2018, 54, (3), pp. 28212833.
    46. 46)
      • 46. Rao, R.S., Ravindra, K., Satish, K., et al: ‘Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 317325.
    47. 47)
      • 47. Kanwar, N., Gupta, N., Niazi, K. R., et al: ‘Optimal allocation of DGs and reconfiguration of radial distribution systems using an intelligent search-based TLBO’, Electr. Power Compon. Syst., 2017, 45, (5), pp. 476490.
    48. 48)
      • 48. Hamida, I. B., Salah, S. B., Msahli, F., et al: ‘Optimal network reconfiguration and renewable DG integration considering time sequence variation in load and DGs’, Renew. Energy, 2018, 121, pp. 6680.
    49. 49)
      • 49. Zare, M., Azizipanah-Abarghooee, R., Hooshmand, R.-A., et al: ‘Optimal reconfigurattion of distribution systems by considering switch and wind turbine placements to enhance reliability and efficiency’, IET Gener. Transm. Distrib., 2018, 12, (6), pp. 12711284.
    50. 50)
      • 50. Singh, A.K., Parida, S.K.: ‘A review on distributed generation allocation and planning in deregulated electricity market’, Renew. Sustain. Energy Rev., 2018, 82, pp. 41324141.
    51. 51)
      • 51. Hung, D.Q., Mithulananthan, N., Lee, K.Y.: ‘Determining PV penetration for distribution systems with time-varying load models’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 30483057.
    52. 52)
      • 52. Hamad, A.A., Azzouz, M.A., Saadany, E.F.E.: ‘A sequential power flow algorithm for islanded hybrid AC/DC microgrids’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 39613970.
    53. 53)
      • 53. Kashem, M.A., Ganapathy, V., Jasmon, G.B., et al: ‘A novel method for loss minimization in distribution networks’. Proc. IEEE Int. Conf. on Electric Utility Deregulation and Restructuring and Power Technologies, 2000, pp. 251256.
    54. 54)
      • 54. International Renewable Energy Agency, ‘Renewable power generation costs in 2017’ (International Renewable Energy Agency, Abu Dhabi, 2017).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2018.0146
Loading

Related content

content/journals/10.1049/iet-stg.2018.0146
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address