http://iet.metastore.ingenta.com
1887

access icon openaccess Multi-objective optimisation of generation maintenance scheduling in restructured power systems based on global criterion method

Loading full text...

Full text loading...

/deliver/fulltext/iet-stg/2/2/IET-STG.2018.0140.html;jsessionid=17s4vsklger2f.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-stg.2018.0140&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Shahidehpour, M., Marwali, M.: ‘Maintenance scheduling in restructured power systems’ (Springer Science & Business Media, New York, 2012).
    2. 2)
      • 2. Farhangi, H.: ‘The path of the smart grid’, IEEE Power Energy Mag., 2010, 8, (1), pp. 1828.
    3. 3)
      • 3. Xu, S., Qian, Y., Hu, R.Q.: ‘Reliable and resilient access network design for advanced metering infrastructures in smart grid’, IET Smart Grid, 2010, 1, (1), pp. 2430.
    4. 4)
      • 4. Abiri-Jahromi, A., Fotuhi-Firuzabad, M., Parvania, M.: ‘Optimized midterm preventive maintenance outage scheduling of thermal generating units’, IEEE Trans. Power Syst., 2012, 27, pp. 13541365.
    5. 5)
      • 5. Fu, Y., Li, Z., Shahidehpour, M., et al: ‘Coordination of midterm outage scheduling with short-term security-constrained unit commitment’, IEEE Trans. Power Syst., 2009, 24, pp. 18181830.
    6. 6)
      • 6. Wang, Y., Kirschen, D.S., Zhong, H., et al: ‘Coordination of generation maintenance scheduling in electricity markets’, IEEE Trans. Power Syst., 2016, 31, pp. 45654574.
    7. 7)
      • 7. Wu, L., Shahidehpour, M., Fu, Y.: ‘Security-constrained generation and transmission outage scheduling with uncertainties’, IEEE Trans. Power Syst., 2010, 25, pp. 16741685.
    8. 8)
      • 8. Balaji, G., Balamurugan, R., Lakshminarasimman, L.: ‘Mathematical approach assisted differential evolution for generator maintenance scheduling’, Int. J. Electr. Power Energy Syst., 2016, 82, pp. 508518.
    9. 9)
      • 9. Moradkhani, A., Haghifam, M.R., Abedi, S.M.: ‘Risk-based maintenance scheduling in the presence of reward penalty scheme’, Electr. Power Syst. Res., 2015, 121, pp. 126133.
    10. 10)
      • 10. Goel, A., Meisel, F.: ‘Workforce routing and scheduling for electricity network maintenance with downtime minimization’, Eur. J. Oper. Res., 2013, 231, pp. 210228.
    11. 11)
      • 11. Eygelaar, J., Lötter, D.P., Van Vuuren, J.H.: ‘Generator maintenance scheduling based on the risk of power generating unit failure’, Int. J. Electr. Power Energy Syst., 2018, 95, pp. 8395.
    12. 12)
      • 12. Barlow, R.E., Proschan, F.: ‘Statistical theory of reliability and life testing: probability models’ (Florida State Univ., Tallahassee, 1975).
    13. 13)
      • 13. Parhizkar, T., Mosleh, A., Roshandel, R.: ‘Aging based optimal scheduling framework for power plants using equivalent operating hour approach’, Appl. Energy, 2017, 205, pp. 13451363.
    14. 14)
      • 14. Pandzic, H., Conejo, A.J., Kuzle, I.: ‘An EPEC approach to the yearly maintenance scheduling of generating units’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 922930.
    15. 15)
      • 15. Guedes, L., Vieira, D., Lisboa, A., et al: ‘A continuous compact model for cascaded hydro-power generation and preventive maintenance scheduling’, Int. J. Electr. Power Energy Syst., 2015, 73, pp. 702710.
    16. 16)
      • 16. Mollahassani-pour, M., Rashidinejad, M., Abdollahi, A.: ‘Spinning reserve contribution using unit responsibility criterion incorporating preventive maintenance scheduling’, Int. J. Electr. Power Energy Syst., 2015, 73, pp. 508515.
    17. 17)
      • 17. Mollahassani-Pour, M., Abdollahi, A., Rashidinejad, M.: ‘Application of a novel cost reduction index to preventive maintenance scheduling’, Int. J. Electr. Power Energy Syst., 2014, 56, pp. 235240.
    18. 18)
      • 18. El-Sharkh, M.: ‘Clonal selection algorithm for power generators maintenance scheduling’, Int. J. Electr. Power Energy Syst., 2014, 57, pp. 7378.
    19. 19)
      • 19. Ekpenyong, U.E., Zhang, J., Xia, X.: ‘An improved robust model for generator maintenance scheduling’, Electr. Power Syst. Res., 2012, 92, pp. 2936.
    20. 20)
      • 20. Kopanos, G.M., Murele, O.C., Silvente, J., et al: ‘Efficient planning of energy production and maintenance of large-scale combined heat and power plants’, Energy Convers. Manage., 2018, 169, pp. 390403.
    21. 21)
      • 21. Min, C., Kim, M., Park, J., et al: ‘Game-theory-based generation maintenance scheduling in electricity markets’, Energy, 2013, 55, pp. 310318.
    22. 22)
      • 22. Bozorgi, A., Pedram, M.M., Yousefi, G.R.: ‘Unit maintenance scheduling: a robust model, based on fuzzy cost factors and peak loads’, Int. J. Electr. Power Energy Syst., 2016, 79, pp. 142149.
    23. 23)
      • 23. Kumarappan, N., Suresh, K.: ‘Combined SA PSO method for transmission constrained maintenance scheduling using levelized risk method’, Int. J. Electr. Power Energy Syst., 2015, 73, pp. 10251034.
    24. 24)
      • 24. Saraiva, J.T., Pereira, M.L., Mendes, V.T., et al: ‘A simulated annealing based approach to solve the generator maintenance scheduling problem’, Electr. Power Syst. Res., 2011, 81, pp. 12831291.
    25. 25)
      • 25. Suresh, K., Kumarappan, N.: ‘Hybrid improved binary particle swarm optimization approach for generation maintenance scheduling problem’, Swarm. Evol. Comput., 2013, 9, pp. 6989.
    26. 26)
      • 26. Samuel, G.G., Rajan, C.C.A.: ‘Hybrid: particle swarm optimization–genetic algorithm and particle swarm optimization–shuffled frog leaping algorithm for long-term generator maintenance scheduling’, Int. J. Electr. Power Energy Syst., 2015, 65, pp. 432442.
    27. 27)
      • 27. Schlünz, E.B., Van Vuuren, J.H.: ‘An investigation into the effectiveness of simulated annealing as a solution approach for the generator maintenance scheduling problem’, Int. J. Electr. Power Energy Syst., 2013, 53, pp. 166174.
    28. 28)
      • 28. Lakshminarayanan, S., Kaur, D.: ‘Optimal maintenance scheduling of generator units using discrete integer cuckoo search optimization algorithm’, Swarm Evol. Comput., 2018, 42, pp. 8998.
    29. 29)
      • 29. Fattahi, M., Mahootchi, M., Mosadegh, H., et al: ‘A new approach for maintenance scheduling of generating units in electrical power systems based on their operational hours’, Comput. Oper. Res., 2014, 50, pp. 6179.
    30. 30)
      • 30. Ghazvini, M.F., Morais, H., Vale, Z.: ‘Coordination between mid-term maintenance outage decisions and short-term security-constrained scheduling in smart distribution systems’, Appl. Energy, 2012, 96, pp. 281291.
    31. 31)
      • 31. Elyas, S.H., Foroud, A.A., Chitsaz, H.: ‘A novel method for maintenance scheduling of generating units considering the demand side’, Int. J. Electr. Power Energy Syst., 2013, 51, pp. 201212.
    32. 32)
      • 32. Ghazvini, M.A.F., Canizes, B., Vale, Z., et al: ‘Stochastic short-term maintenance scheduling of GENCOs in an oligopolistic electricity market’, Appl. Energy, 2013, 101, pp. 667677.
    33. 33)
      • 33. Lindner, B. G., Brits, R., Van Vuuren, J. H., et al: ‘Tradeoffs between levelling the reserve margin and minimising production cost in generator maintenance scheduling for regulated power systems’, Int. J. Electr. Power Energy Syst., 2018, 101, pp. 458471.
    34. 34)
      • 34. Karaboga, D., Basturk, B.: ‘A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm’, J. Glob. Optim., 2007, 39, (3), pp. 459471.
    35. 35)
      • 35. Holland, J.H.: ‘Genetic algorithms’, Sci. Am., 1992, 267, (1), pp. 6673.
    36. 36)
      • 36. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’. Proc. IEEE Int. Conf. Neural Networks, Perth, Australia, November 1995, pp. 19421948.
    37. 37)
      • 37. Oshnoei, A., Hagh, M.T., Khezri, R., et al: ‘Application of IPSO and fuzzy logic methods in electrical vehicles for efficient frequency control of multi-area power systems’. Iranian Conf. on Electrical Engineering (ICEE), Tehran, Iran, 2017, pp. 13491354.
    38. 38)
      • 38. Egan, G.T., Dillon, T.S., Morsztyn, K.: ‘An experimental method of determination of optimal maintenance schedules in power systems using the branch-and-bound technique’, IEEE Trans. Man Cybern., 1976, 6, pp. 538547.
    39. 39)
      • 39. Nikkhah, S., Rabiee, A.: ‘Voltage stability constrained multi-objective optimization model for long-term expansion planning of large-scale wind farms’, IET Gener. Transm. Distrib., 2017, 12, (3), pp. 548555.
    40. 40)
      • 40. Chiandussi, G., Codegone, M., Ferrero, S., et al: ‘Comparison of multi-objective optimization methodologies for engineering applications’, Comput. Math. Appl., 2012, 63, pp. 912942.
    41. 41)
      • 41. Brooke, A., Kendrick, D., Meeraus, A., et al: ‘GAMS a user's guide’ (GAMS Development Corporation, Washington, DC, 1998).
    42. 42)
      • 42. Bussieck, M.R., Vigerske, S.: ‘MINLP solver software’, ‘Wiley encyclopedia of operations research and management science’ (Wiley, Hoboken, 2010).
    43. 43)
      • 43. Illinois Institute of Technology (IIT) IEEE 118-bus System Data, Electrical Computer Engineering Department. Available at http://motor.ece.iit.edu/Data/Gastranssmion 118 14test.xls.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2018.0140
Loading

Related content

content/journals/10.1049/iet-stg.2018.0140
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address