http://iet.metastore.ingenta.com
1887

access icon openaccess Wind turbine participation in micro-grid frequency control through self-tuning, adaptive fuzzy droop in de-loaded area

Loading full text...

Full text loading...

/deliver/fulltext/10.1049/iet-stg.2018.0095/IET-STG.2018.0095.html;jsessionid=37gsnluuo734p.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-stg.2018.0095&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Tuner, G., Jay, P. K., Caroline, L. S., et al: ‘Design and active control of a microgrid testbed’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 7381.
    2. 2)
      • 2. Khooban, M. H, Niknam, T., Blaabjerg, F.: ‘A new load frequency control strategy for micro-grids with considering electrical vehicles’, Electr. Power Syst. Res., 2017, 143, pp. 585598.
    3. 3)
      • 3. Bevrani, H., Habibi, F., Babahajyami, P., et al: ‘Intelligent frequency control in an acmicrogid: online PSO-based fuzzy tuning approach’, IEEE Trans. Smart Grid, 2012, 58, (1), pp. 158172.
    4. 4)
      • 4. Khalghani, M. R., Khooban, M. H., Mahboubi-Moghaddam, E., et al: ‘A self-tuning load frequency control strategy for microgrid: human brain emotional learning’, Int. J. Electr. Power Energy Syst.., 2016, 75, pp. 311319.
    5. 5)
      • 5. Lopes, J.P., Moreira, C. L., Mdureria, A. G.: ‘Defining control strategies for microgrids islanded operation’, IEEE Trans. Power Syst.., 2006, 21, (1), pp. 916924.
    6. 6)
      • 6. Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., et al: ‘Trends in microgrids control’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 19051919.
    7. 7)
      • 7. Khooban, M. H., Niknam, T., Blaabjerg, F., et al: ‘A robust adaptive load frequency control for micro-grids’, ISA Trans.., 2016, 65, pp. 220229.
    8. 8)
      • 8. De Almeria, R. G., Castronuovo, E.D., Lopes, J. A. P.: ‘Optimum generation control in wind parks when carrying out system operator request’, IEEE Trans. Power Syst., 2006, 2, (2), pp. 718725.
    9. 9)
      • 9. Jiang, J. N., Tang, C. Y., Ramakumar, R. G.: ‘Control and operation of grid connected wind farms’ (Springer Press, Basel, 2016).
    10. 10)
      • 10. Wu, B., Lang, Y., Zargari, N., et al: ‘Power conversion and control of wind energy systems’ (Wiely-IEEE Press, New York, 2011).
    11. 11)
      • 11. Ekanayake, N., Jenkins, J.: ‘Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency’, IEEE Trans. Energy Convers.., 2004, 19, (4), pp. 800802.
    12. 12)
      • 12. Mendis, N., Muttaqi, K.: ‘An integrated control approach for standalone operation of a hybridside wind turbine generating system with maximum power extraction capability’, Int. J. Electr. Power Energy Syst.., 2013, 49, pp. 339348.
    13. 13)
      • 13. Abazari, A., Ghazavi Dozein, M., Monsef, H.: ‘An optimal fuzzy-logic based frequency control strategy in a high wind penetrated power system’, J. Franklin, 2018, 355, pp. 62626285.
    14. 14)
      • 14. Gue, Y., Hosseini, S. H., Jiang, J. N., et al: ‘Voltage/pitch control for maximisation and regulation of active/reactive powers in wind turbines with uncertainties’, IET Renew. Power Gener.., 2012, 6, (2), pp. 99109.
    15. 15)
      • 15. Abazari, A., Monsef, H., Wu, B.: ‘Load frequency control by de-loaded wind farm using the fuzzy-based PID droop controller’, IET Renew. Power Gener.., 2019, 13, (1), pp. 180190.
    16. 16)
      • 16. Zheng, S., Tang, T., Song, B., et al: ‘Stable adaptive PI control for permanent magnet synchronous motor device based on improved JITL technique’, ISA Trans.., 2013, 54, pp. 539549.
    17. 17)
      • 17. Yang, J., Zhili, Z., Yufei, T., et al: ‘Load frequency control in isolated micro-grids with electrical vehicles based on multivariable generalized predictive theory’, Energies, 2015, 8, (3), pp. 21452164.
    18. 18)
      • 18. Dhillon, S. S., Lather, J. S., Marwaha, S.: ‘Multi objective load frequency control using hybrid bacterial foraging and particle swarm optimized PI controller’, Int. J. Electr. Power Energy Syst.., 2016, 79, pp. 196209.
    19. 19)
      • 19. Yesil, E.: ‘Interval type-2 fuzzy PID load frequency controller using Big Bang-Big crunch optimization’, Appl. Soft Comput.., 2014, 15, pp. 100112.
    20. 20)
      • 20. Bevrani, H., Daneshmand, P. R.: ‘Frequency logic-based frequency control concerning high penetration of wind turbines’, IEEE Syst. J., 2012, 6, (1), pp. 173180.
    21. 21)
      • 21. Ramtharan, G., Ekanayake, J. B., Jenkins, N.: ‘Frequency support from doubly fed induction generator wind turbines’, IET Renew. Power Gener.., 2007, 1, (1), pp. 39.
    22. 22)
      • 22. De Almeida, R. G., Lopes, J.A.P.: ‘Participation of doubly fed induction wind generators in system frequency regulation’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 944949.
    23. 23)
      • 23. Zertak, A., Verbic, G., Pantos, M.: ‘Participation of DFIG wind turbines in frequency control ancillary service by optimized rotational kinetic energy’. 7th Int. Conf. on the European Energy Market, Madrid, Spain, 2010, pp. 16.
    24. 24)
      • 24. Vidyanandan, K. V., Senroy, N.: ‘Primary frequency regulation by deloaded wind turbines using variable droop’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 839846.
    25. 25)
      • 25. Ghafouri, A., Milimonfared, J. B., Gharehpetian, G.: ‘Fuzzy-adaptive frequency control of power system including microgrids, wind farms, and conventional power plants’, IEEE Syst. J., 2017, 99, (1), pp. 19.
    26. 26)
      • 26. Zhang, W., Fang, K.: ‘Controlling active power of wind farms to participate in load frequency control of power systems’, IET Gener. Transm. Distrib., 2017, 11, (9), pp. 19.
    27. 27)
      • 27. Maurici, J.M., Marano, A., Gomez-Exposito, A., et al: ‘Frequency regulation contribution through variable-speed wind energy conversion systems’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 173180.
    28. 28)
      • 28. Gholamrezaei, V., Ghazavi Dozein, M., Monsef, H., et al: ‘An optimal frequency control method through a dynamic load frequency control (LFC) model incorporating wind farms’, IEEE Syst. J., 2017, 99, pp. 110.
    29. 29)
      • 29. Lee, D.-J., Wang, L.: ‘Small-signal stability analysis of an autonomous hybrid renewable energy power generation/energy storage system part I: time-domain simulations’, IEEE Trans. Energy Convers., 2008, 23, (1), pp. 311320.
    30. 30)
      • 30. Chang-Chien, L., Sun, C., Yeh, Y.: ‘Modeling of wind farm participation in AGC’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 12041211.
    31. 31)
      • 31. Bossanyi, E.: ‘The design of closed loop controllers for wind turbines’, Wind Energy J., 2000, 3, pp. 149163.
    32. 32)
      • 32. Qiao, W. Z., Mizumoto, M.: ‘PID type fuzzy controller and parameters adaptive method’, Fuzzy Sets Syst.., 1996, 78, (1), pp. 2335.
    33. 33)
      • 33. Agbossou, K., Kolhe, M., Hamelin, J., et al: ‘Performance of a stand-alone renewable energy system based on energy storage as hydrogen’, IEEE Trans. Energy Convers., 2004, 19, (3), pp. 633640.
    34. 34)
      • 34. Duryea, S., Islam, S., Lawrance, W.: ‘A battery management system for stand-alone photovoltaic energy systems’, IEEE Trans. Ind. Appl., 2001, 7, (3), pp. 6772.
    35. 35)
      • 35. Sebastian, R., Peña-Alzola, R.: ‘Control and simulation of a flywheel energy storage for a wind diesel power system’, Int. J. Electr. Power Energy Syst.., 2015, 64, pp. 10491056.
    36. 36)
      • 36. Diaz Gonzalez, F., Sumper, A., Gomis-Bellmunt, O.: ‘Energy storage in power systems’ (John Wiley & Sons Publication, Chichester, 2016).
    37. 37)
      • 37. Sayfutdinov, T., Patsios, C., Bialek, J. W., et al: ‘Incorporating variable lifetime and self-discharge into optimal sizing and technology selection of energy storage systems’, IET Smart Grid, 2018, 1, (1), pp. 1118.
    38. 38)
      • 38. Obara, S.: ‘Analysis of a fuel cell micro-grid with small-scale wind turbine generator’, Int. J. Hydrogen Energy, 2007, 32, (3), pp. 323336.
    39. 39)
      • 39. Passino, K. M., Yurkovich, S.: ‘Fuzzy control’ (Addison-Wesley Longman, Inc., Boston, 1998).
    40. 40)
      • 40. Karaboga, D., Basturk, B.: ‘A powerful and efficient algorithm for numerical optimization: artificial bee colony (ABC)’, J. Global Optim., 2007, 39, (3), pp. 459471.
    41. 41)
      • 41. Rajesekhar, A., Kunathi, P., Abraham, A., et al: ‘Fractional order speed control of DC motor using levy mutated artificial bee colony algorithm’. 2011 World Congress on Information and communication Technologies, Mumbai, 2011, pp. 713.
    42. 42)
      • 42. Cam, E.: ‘Application of fuzzy logic for load frequency control of hydro electrical power plants’, Energy Convers. Manage., 2007, 48, (4), pp. 12811288.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2018.0095
Loading

Related content

content/journals/10.1049/iet-stg.2018.0095
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address