http://iet.metastore.ingenta.com
1887

access icon openaccess Cooperative game theory approach for multi-objective home energy management with renewable energy integration

Loading full text...

Full text loading...

/deliver/fulltext/iet-stg/2/1/IET-STG.2018.0094.html;jsessionid=392sc4oveswv1.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-stg.2018.0094&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Yi, P., Dong, X., Iwayemi, A., et al: ‘Real-time opportunistic scheduling for residential demand response’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 227234.
    2. 2)
      • 2. Son, Y.S., Pulkkinen, T., Moon, K.D., et al: ‘Home energy management system based on power line communication’, IEEE Trans. Consum. Electron., 2010, 56, (3), pp. 13801386.
    3. 3)
      • 3. Vardakas, J.S., Zorba, N., Verikoukis, C.V.: ‘A survey on demand response programs in smart grids: pricing methods and optimization algorithms’, IEEE Commun. Surv. Tutorials, 2015, 17, (1), pp. 152178.
    4. 4)
      • 4. Rastegar, M.: ‘Impacts of residential energy management on reliability of distribution systems considering customer satisfaction model’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 60626073.
    5. 5)
      • 5. Hu, R.L., Skorupski, R., Entriken, R., et al: ‘A mathematical programming formulation for optimal load shifting of electricity demand for the smart grid’, IEEE Trans. Big Data, 2016, doi: 10.1109/TBDATA.2016.2639528.
    6. 6)
      • 6. Shareef, H., Ahmed, M.S., Mohamed, A., et al: ‘Review on home energy management system considering demand responses, smart technologies, and intelligent controllers’, IEEE Access, 2018, 6, pp. 2449824509.
    7. 7)
      • 7. Arun, S., Selvan, M.: ‘Intelligent residential energy management system for dynamic demand response in smart buildings’, IEEE Syst. J., 2017, 12, (2), pp. 13291340.
    8. 8)
      • 8. Chavali, P., Yang, P., Nehorai, A.: ‘A distributed algorithm of appliance scheduling for home energy management system’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 282290.
    9. 9)
      • 9. Adika, C.O., Wang, L.: ‘Smart charging and appliance scheduling approaches to demand side management’, Int. J. Electr. Power Energy Syst., 2014, 57, pp. 232240.
    10. 10)
      • 10. Chen, X., Wei, T., Hu, S.: ‘Uncertainty-aware household appliance scheduling considering dynamic electricity pricing in smart home’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 932941.
    11. 11)
      • 11. Bradac, Z., Kaczmarczyk, V., Fiedler, P.: ‘Optimal scheduling of domestic appliances via MILP’, Energies, 2014, 8, (1), pp. 217232.
    12. 12)
      • 12. Rahim, S., Javaid, N., Ahmad, A., et al: ‘Exploiting heuristic algorithms to efficiently utilize energy management controllers with renewable energy sources’, Energy Build., 2016, 129, pp. 452470.
    13. 13)
      • 13. Khalid, A., Javaid, N., Guizani, M., et al: ‘Towards dynamic coordination among home appliances using multi-objective energy optimization for demand side management in smart buildings’, IEEE Access, 2018, 6, pp. 1950919529.
    14. 14)
      • 14. Javaid, N., Ullah, I., Akbar, M., et al: ‘An intelligent load management system with renewable energy integration for smart homes’, IEEE Access, 2017, 5, pp. 1358713600.
    15. 15)
      • 15. Liu, D., Xu, Y., Wei, Q., et al: ‘Residential energy scheduling for variable weather solar energy based on adaptive dynamic programming’, IEEE/CAA J. Autom. Sinica, 2018, 5, (1), pp. 3646.
    16. 16)
      • 16. Salinas, S., Li, M., Li, P.: ‘Multi-objective optimal energy consumption scheduling in smart grids’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 341348.
    17. 17)
      • 17. Shirazi, E., Jadid, S.: ‘Optimal residential appliance scheduling under dynamic pricing scheme via HEMDAS’, Energy Build., 2015, 93, pp. 4049.
    18. 18)
      • 18. Shakouri, H., Kazemi, A.: ‘Multi-objective cost-load optimization for demand side management of a residential area in smart grids’, Sustain. Cities Soc., 2017, 32, pp. 171180.
    19. 19)
      • 19. Pacific gas and electric company: ‘residential time of use service’, Available to: https://www.pge.com/, Dec 31, 2017.
    20. 20)
      • 20. Setlhaolo, D., Xia, X.: ‘Combined residential demand side management strategies with coordination and economic analysis’, Int. J. Electr. Power Energy Syst., 2016, 79, pp. 150160.
    21. 21)
      • 21. Setlhaolo, D., Xia, X.: ‘Optimal scheduling of household appliances with a battery storage system and coordination’, Energy Build., 2015, 94, pp. 6170.
    22. 22)
      • 22. Giorsetto, P., Utsurogi, K.F.: ‘Development of a new procedure for reliability modeling of wind turbine generators’, IEEE Trans. Power Appar. Syst., 1983, PAS-102, (1), pp. 134143.
    23. 23)
      • 23. Talari, S., Yazdaninejad, M., Haghifam, M.R.: ‘Stochastic-based scheduling of the microgrid operation including wind turbines, photovoltaic cells, energy storages and responsive loads’, IET Gener. Transm. Distrib., 2015, 9, (12), pp. 14981509.
    24. 24)
      • 24. Hu, Y., Rao, S.S.: ‘Game-theory approach for multi-objective optimal design of stationary flat-plate solar collectors’, Eng. Optim., 2009, 41, (11), pp. 10171035.
    25. 25)
      • 25. Rao, S.: ‘Game theory approach for multiobjective structural optimization’, Comput. Struct., 1987, 25, (1), pp. 119127.
    26. 26)
      • 26. Pv watts: ‘solar resource data’, Available to: http://pvwatts.nrel.gov/pvwatts.php, 31 December 2017.
    27. 27)
      • 27. Achterberg, T.: ‘Scip: solving constraint integer programs’, Math. Program. Comput., 2009, 1, (1), pp. 141.
    28. 28)
      • 28. Bezerra, P., Saavedra, O.R., Ribeiro, L.A.: ‘A dual battery storage bank configuration for isolated microgrids based on renewable sources’, IEEE Trans. Sustain. Energy, 2018, 9, (4), pp. 16181626.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2018.0094
Loading

Related content

content/journals/10.1049/iet-stg.2018.0094
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address