http://iet.metastore.ingenta.com
1887

access icon openaccess Machine learning based energy management system for grid disaster mitigation

Loading full text...

Full text loading...

/deliver/fulltext/iet-stg/2/2/IET-STG.2018.0043.html;jsessionid=1svkbbufoqfsf.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-stg.2018.0043&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Jiang, H., Zhang, J.J., Gao, W., et al: ‘Fault detection, identification, and location in smart grid based on data-driven computational methods’, IEEE Trans. Smart Grid, 2014, 5, (6), pp. 29472956, doi: 10.1109/TSG.2014.2330624.
    2. 2)
      • 2. Abdelgayed, T.S., Morsi, W.G., Sidhu, T.S.: ‘Fault detection and classification based on co-training of semi-supervised machine learning’, IEEE Trans. Ind. Electron., 2016, PP, (99), pp. 11, doi: 10.1109/TIE.2017.272696.
    3. 3)
      • 3. Uçar, F., Alçin, Ö.F., Dandil, B., et al: ‘Machine learning based power quality event classification using wavelet – entropy and basic statistical features’, Renew. Sustain. Energy Rev., 2013, 24, pp. 103110, doi: 10.1016/j.rser.2013.03.023.
    4. 4)
      • 4. Zhuo, K.L., Yang, S., Sen, C.: ‘A review of electric load classification in smart grid environment’. 2016 21st Int. Conf. on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, 2016, pp. 414419, doi: 10.1109/MMAR.2016.7575171.
    5. 5)
      • 5. Esmalifalak, M., Liu, L., Nguyen, N., et al: ‘Detecting stealthy false data injection using machine learning in smart grid’, IEEE Syst. J., 2017, 11, (3), pp. 16441652, doi: 10.1109/JSYST.2014.2341597.
    6. 6)
      • 6. Ozay, M., Esnaola, I., Yarman Vural, F.T., et al: ‘Machine learning methods for attack detection in the smart grid’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (8), pp. 17731786, doi: 10.1109/TNNLS.2015.2404803.
    7. 7)
      • 7. Anwar, A., Mahmood, A.N., Pickering, M.: ‘Modeling and performance evaluation of stealthy false data injection attacks on smart grid in the presence of corrupted measurements’, J. Comput. Syst. Sci., 2017, 83, pp. 5872, doi: 10.1016/j.jcss.2016.04.005.
    8. 8)
      • 8. Anwar, A., Mahmood, A.N., Taheri, J., et al: ‘HPC-based intelligent volt/VAr control of unbalanced distribution smart grid in the presence of noise’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 14461459, doi: 10.1109/TSG.2017.2662229.
    9. 9)
      • 9. Anwar, A., Mahmood, A.N., Tari, Z.: ‘Ensuring data integrity of OPF module and energy database by detecting changes in power flow patterns in smart grids’, IEEE Trans. Ind. Inf., 2017, 13, (6), pp. 32993311, doi: 10.1109/TII.2017.274032.
    10. 10)
      • 10. Desai, S., Alhadad, R., Chilamkurti, N., et al: ‘A survey of privacy preserving schemes in IoE enabled smart grid advanced metering infrastructure’, Cluster Comput., 2018, 34, (2), pp. 127, doi: 10.1007/s10586-018-2820-9.
    11. 11)
      • 11. Rudin, C., Waltz, D., Anderson, R.N., et al: ‘Machine learning for the New York city power grid’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (2), pp. 328345, doi: 10.1109/TPAMI.2011.108.
    12. 12)
      • 12. Rudin, C., Ertekin, S., Passonneau, R., et al: ‘Analytics for power grid distribution reliability in New York city’, Interfaces. (Providence), 2014, 44, (4), pp. 351439, doi: 10.1287/inte.2014.0748.
    13. 13)
      • 13. Wu, L.L., Kaiser, G.E., Rudin, C., et al: ‘Evaluating machine learning for improving power grid reliability’. Columbia Academic Commons, CUCS-025-11, May 2012, doi: 10.7916/D8SB4F1Z.
    14. 14)
      • 14. Li, W., Yuen, C., Ul-Hassan, N., et al: ‘Demand response management for residential smart grid: from theory to practice’, IEEE Access, 2015, 3, pp. 24312440, doi: 10.1109/ACCESS.2015.2503379.
    15. 15)
      • 15. Thirugnanam, K., Kerk, S.K., Yuen, C., et al: ‘Energy management for renewable microgrid in reducing diesel generators usage with multiple types of battery’, IEEE Trans. Ind. Electron., 2018, 65, (8), pp. 67726786, doi: 10.1109/TIE.2018.2795585.
    16. 16)
      • 16. Tushar, W., Yuen, C., Chai, B., et al: ‘Smart grid testbed for demand focused energy management in end user environments’, IEEE Wirel. Commun., 2016, 23, (6), pp. 7080, doi: 10.1109/MWC.2016.1400377RP.
    17. 17)
      • 17. Chaouachi, A., Kamel, R.M., Andoulsi, R., et al: ‘Multiobjective intelligent energy management for a microgrid’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 16881699, doi: 10.1109/TIE.2012.2188873.
    18. 18)
      • 18. Jiang, W., Fahimi, B.: ‘Multiport power electronic interface–concept, modeling, and design’, IEEE Trans. Power Electron., 2011, 26, (7), pp. 18901900, doi: 10.1109/TPEL.2010.2093583.
    19. 19)
      • 19. Shamsi, P., Fahimi, B.: ‘Dynamic behavior of multiport power electronic interface under source/load disturbances’, IEEE Trans. Ind. Electron., 2013, 60, (10), pp. 45004511, doi: 10.1109/TIE.2012.2210376.
    20. 20)
      • 20. McDonough, M.: ‘Integration of inductively coupled power transfer and hybrid energy storage system: a multiport power electronics interface for battery-powered electric vehicles’, IEEE Trans. Power Electron., 2015, 30, (11), pp. 64236433, doi: 10.1109/TPEL.2015.2422300.
    21. 21)
      • 21. Bidram, A., Davoudi, A., Lewis, F.L., et al: ‘Distributed cooperative secondary control of microgrids using feedback linearization’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 34623470, doi: 10.1109/TPWRS.2013.2247071.
    22. 22)
      • 22. Wang, W., Xu, Y., Khanna, M.: ‘A survey on the communication architectures in smart grid’, Comput. Netw., 2011, 55, pp. 36043629, doi:10.1016/j.comnet.2011.07.010.
    23. 23)
      • 23. Zanaty, E.A.: ‘Support vector machines (SVMs) versus multilayer perception (MLP) in data classification’, Egypt. Inform. J., 2012, 13, (3), pp. 177183, 10.1016/j.eij.2012.08.002.
    24. 24)
      • 24. Shafri, H.Z.M., Ramle, F.S.H.: ‘A comparison of support vector machine and decision tree classifications using satellite data of Langkawi island’, Inf. Technol. J., 2009, 8, (1), pp. 6470.
    25. 25)
      • 25. Yuan, X., Yuan, X., Yang, F., et al: ‘Gene expression classification: decision trees vs. SVMs’. Florida AI Research Society Conf., St. Augustine, FL, May 2003.
    26. 26)
      • 26. Raikwal, J.S., Saxena, K.: ‘Performance evaluation of SVM and K-nearest neighbor algorithm over medical data set’, Int. J. Comput. Appl., 2012, 50, (14), pp. 3539, doi: 10.5120/7842-1055.
    27. 27)
      • 27. Andrew, N.G.: ‘Online class lecture, topic: ‘machine learning’’. Coursera, Standford University, 2017.
    28. 28)
      • 28. ‘The gaussian Kernel’, stat.wisc.edu, para 2. Available at http://www.stat.wisc.edu/~mchung/teaching/MIA/reading/diffusion.gaussian.kernel.pdf.pdf, Accessed 20 November 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2018.0043
Loading

Related content

content/journals/10.1049/iet-stg.2018.0043
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address