http://iet.metastore.ingenta.com
1887

access icon openaccess New real-time demand-side management approach for energy management systems

Loading full text...

Full text loading...

/deliver/fulltext/iet-stg/2/2/IET-STG.2018.0033.html;jsessionid=4ugsnjef2ras8.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-stg.2018.0033&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Gelazanskas, L., Gamage, K.A.A.: ‘Demand side management in smart grid: a review and proposals for future direction’, Sustain. Cities Soc., 2014, 11, pp. 2230.
    2. 2)
      • 2. ‘Emergency Demand Response Program Manual’. Available at http://www.nyiso.com/public/webdocs/markets_operations/documents/Manuals_and_Guides/Manuals/Operations/edrp_mnl.pdf.
    3. 3)
      • 3. ‘Conservation-and-Demand-Management-Plans’. Available at http://www.ieso.ca.
    4. 4)
      • 4. Lujano-Rojas, J.M., Monteiro, C., Dufo-López, R., et al: ‘Optimum residential load management strategy for real time pricing (RTP) demand response programs’, Energy Policy, 2012, 45, pp. 671679.
    5. 5)
      • 5. Molderink, A., Bakker, V., Bosman, M.G.C., et al: ‘Management and control of domestic smart grid technology’, IEEE Trans. Smart Grid, 2010, 1, (2), pp. 109119.
    6. 6)
      • 6. Kumar, R.H., Ushakumari, S.: ‘A novel architecture for data management and control in autonomous intelligent microgrid’, Procedia Comput. Sci., 2016, 89, pp. 412421.
    7. 7)
      • 7. Eltamaly, A.M., Mohamed, M.A., Alolah, A.I.: ‘A novel smart grid theory for optimal sizing of hybrid renewable energy systems’, Sol. Energy, 2016, 124, pp. 2638.
    8. 8)
      • 8. Mohammad, N., Mishra, Y.: ‘Coordination of wind generation and demand response to minimise operation cost in day-ahead electricity markets using bi-level optimisation framework’, IET Gener. Transm. Distrib., 2018, 12, (16), pp. 37933802.
    9. 9)
      • 9. Almehizia, A.A., Al-Masri, H.M.K., Ehsani, M.: ‘Integration of renewable energy sources by load shifting and utilizing value storage’, IEEE Trans. Smart Grid, to be published, doi: 10.1109/TSG.2018.2871806.
    10. 10)
      • 10. Zhang, J., Zhang, P., Wu, H., et al: ‘Two-stage load-scheduling model for the incentive-based demand response of industrial users considering load aggregators’, IET Gener. Transm. Distrib., 2018, 12, (14), pp. 35183526.
    11. 11)
      • 11. Nguyen, H.K., Song, J.B., Han, Z.: ‘Distributed demand side management with energy storage in smart grid’, IEEE Trans. Parallel Distrib. Syst., 2015, 26, (12), pp. 33463357.
    12. 12)
      • 12. Zakariazadeh, A., Jadid, S.: ‘Energy and reserve scheduling of microgrid using multi-objective optimization’. 22nd Int. Conf. Electr. Distrib., Stockholm, Sweden, 2013, vol. 6, no. 660, pp. 1013.
    13. 13)
      • 13. Vrettos, E., Lai, K., Oldewurtel, F., et al: ‘Predictive control of buildings for demand response with dynamic day-ahead and real-time prices’. 2013 Eur. Control Conf. (ECC), Zurich, Switzerland, 2013, pp. 25272534.
    14. 14)
      • 14. Kumar Nunna, H.S.V.S., Doolla, S.: ‘Responsive end-user based demand side management in multi-microgrid environment’, IEEE Trans. Ind. Inform., 2014, 3203, (c), pp. 11.
    15. 15)
      • 15. Barbato, A., Capone, A., Chen, L., et al: ‘A distributed demand-side management framework for the smart grid’, Comput. Commun., 2015, 57, pp. 1324.
    16. 16)
      • 16. Kanchev, H., Lu, D., Colas, F., et al: ‘Energy management and operational planning of a microgrid with a PV based active generator for smart grid applications’, IEEE Trans. Ind. Electron., 2011, 58, (10), pp. 45834592.
    17. 17)
      • 17. Conejo, J., Morales, J.M., Baringo, L.: ‘Real-time demand response model’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 236242.
    18. 18)
      • 18. Sianaki, O.A., Hussain, O., Tabesh, A.R.: ‘A knapsack problem approach for achieving efficient energy consumption in smart grid for endusers’ life style’. 2010 IEEE Conf. Innov. Technol. an Effic. Reliab. Electr. Supply, Waltham, USA., 2010, pp. 159164.
    19. 19)
      • 19. Zhang, Y., Rahbari-Asr, N., Duan, J., et al: ‘Day-ahead smart grid cooperative distributed energy scheduling with renewable and storage integration’, IEEE Trans. Sustain. Energy, 2016, 7, (4), pp. 17391748.
    20. 20)
      • 20. Verma, P.P., Soumya, P., Swamp, K.S.: ‘Optimal day-ahead scheduling in smart grid with demand side management’. 2016 IEEE 6th Int. Conf. Power Syst. ICPS 2016, New Delhi, India, 2016.
    21. 21)
      • 21. Duan, Q.: ‘A price-based demand response scheduling model in day-ahead electricity market’. Power Energy Soc. Gen. Meet. (PESGM), Boston, USA., 2016, no. 201411159052.
    22. 22)
      • 22. Gong, H., Wang, H.: ‘Day-ahead generation scheduling for variable energy resources considering demand response’. IEEE PES Asia-Pacific Power Energy Conf., Xi'an, China, 2016, pp. 20762080.
    23. 23)
      • 23. Baonegecom, C.A.B., Acharya, N., Wiegman, H.L.N.: ‘Optimal day-ahead scheduling for microgrid participation in frequency regulation markets’. Innov. Smart Grid Technol. Conf., Minneapolis, USA., 2016, pp. 15.
    24. 24)
      • 24. Kwon, S., Ntaimo, L., Gautam, N.: ‘Optimal day-ahead power procurement with renewable energy and demand response’, IEEE Trans. Power Syst., 2016, 8950, pp. 11.
    25. 25)
      • 25. Agnetis, A., De Pascale, G., Detti, P., et al: ‘Load scheduling for household energy consumption optimization’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 23642373.
    26. 26)
      • 26. Biegel, B., Hansen, L.H., Andersen, P., et al: ‘Primary control by ON/OFF demand-side devices’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 20612071.
    27. 27)
      • 27. Shi, W., Li, N., Chu, C., et al: ‘Real-time energy management in microgrids’, IEEE Trans. Smart Grid, 2017, 8, (1), pp. 228238.
    28. 28)
      • 28. Zhang, Y., Meng, F., Wang, R., et al: ‘A stochastic MPC based approach to integrated energy management in microgrids’, Sustain. Cities Soc., 2018, 41, pp. 349362.
    29. 29)
      • 29. Hildmann, H., Saffre, F.: ‘Influence of variable supply and load flexibility on demand-Side management’. 2011 8th Int. Conf. Eur. Energy Mark. EEM 11, Zagreb, 2011, no. May, pp. 6368.
    30. 30)
      • 30. Lu, N., Zhang, Y.: ‘Design considerations of a centralized load controller using thermostatically controlled appliances for continuous regulation reserves’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 914921.
    31. 31)
      • 31. Palensky, P., Zucker, G.: ‘Demand response with functional buildings using simplified process models’. IECON 2011-37th Annu. Conf. IEEE Ind. Electron. Soc., Melbourne, VIC, 2011, pp. 32303235.
    32. 32)
      • 32. Yano, H., Kudo, K., Ikegami, T., et al: ‘A novel charging-time control method for numerous EVs based on a period weighted prescheduling for power supply and demand balancing’. ISGT ‘12 Proc. 2012 IEEE PES Innov. Smart Grid Technol., Washington, DC, 2012, pp. 16.
    33. 33)
      • 33. Wang, T., O'Neill, D., Kamath, H.: ‘Dynamic control and optimization of distributed energy resources in a microgrid’, IEEE Trans. Smart Grid, 2015, 6, (6), pp. 28842894.
    34. 34)
      • 34. Holger Hermanns, H.W.: ‘Demand-response management for dependable power grids’, Embedded Syst. Smart Appl. Energy Manage., 2013, 3, (2013), pp. 122.
    35. 35)
      • 35. Fan, Z.: ‘Distributed demand response and user adaptation in smart grids’. Proc. 12th IFIP/IEEE Int. Symp. Integr. Netw. Manag. IM 2011, Dublin, 2011, pp. 726729.
    36. 36)
      • 36. Fan, Z.: ‘A distributed demand response algorithm and its application to PHEV charging in smart grids’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 12801290.
    37. 37)
      • 37. Akhavan-Rezai, E., Shaaban, M.F., El-Saadany, E.F., et al: ‘Online intelligent demand management of plug-in electric vehicles in future smart parking lots’, IEEE Syst. J., 2016, 10, (2), pp. 483494.
    38. 38)
      • 38. ‘Artelys Knitro’. Available at https://www.gams.com/ latest/ docs/solvers/knitro/index.html.
    39. 39)
      • 39. ‘Development GAMS Corporation, GAMS — The Solver Manuals’. Available at https://www.gams.com/latest /docs/S_MAIN.html.
    40. 40)
      • 40. ‘How the Genetic Algorithm Works’. Available at https://www.mathworks.com/help/gads/how-the-genetic-algorithm-works.html.
    41. 41)
      • 41. Helal, S.A., Najee, R.J., Hanna, M.O., et al: ‘On optimal scheduling for smart homes and their integration in smart grids’. 2017 IEEE 30th Canadian Conf. on Electrical and Computer Engineering (CCECE), Windsor, ON, 2017.
    42. 42)
      • 42. Meng, F., Zeng, X.-J., Zhang, Y., et al: ‘An integrated optimization + learning approach to optimal dynamic pricing for the retailer with multi-type customers in smart grids’, Inf. Sci., 2018, 448–449, pp. 215235.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2018.0033
Loading

Related content

content/journals/10.1049/iet-stg.2018.0033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address