Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Distributed voltage and frequency synchronisation control scheme for islanded inverter-based microgrid

This study presents a fully distributed control paradigm for secondary control of islanded AC microgrid (MG). The proposed method addresses both voltage and frequency restoration for inverter-based distributed generators (DGs). The MG system has droop controlled DG units with predominantly inductive transmission lines and different communication topologies. The restoration scheme is fully distributed in nature, and the DGs need to communicate with their neighbours using a sparse communication network. The proposed control scheme is efficient to provide quick restoration of the voltage and frequency whilst accurate power-sharing is achieved despite disturbances. Further, convergence and stability analysis of the proposed control scheme is presented. The proposed algorithm avoids the need for a central controller and complex communication structure thereby reducing the computational burden and the risk of single-point-failure. The performance of the proposed control scheme has been verified considering variations in load and communication topologies and link delay by pursuing an extensive simulation study in MATLAB/SimPowerSystem toolbox. The proposed control scheme supports plug-and-play demand and scalability of MG network. The proposed control scheme is also compared with the neighbourhood tracking error based distributed control scheme and observed that the former exhibit faster convergence and accurate performance despite disturbances in MG network.

References

    1. 1)
      • 33. Dehkordi, N.M., Sadati, N., Hamzeh, M.: ‘Fully distributed cooperative secondary frequency and voltage control of islanded microgrids’, IEEE Trans. Energy Convers., 2017, 32, (2), pp. 675685.
    2. 2)
      • 35. Shrivastava, S., Subudhi, B., Das, S.: ‘Voltage and frequency synchronization of a low voltage inverter based microgrid’. 4th Int. Conf. on Power, Control & Embedded Systems (ICPCES), Allahabad, 9–11 March 2017, pp. 16.
    3. 3)
      • 16. Savaghebi, M., Jalilian, A., Vasquez, J.C., et al: ‘Secondary control scheme for voltage unbalance compensation in an islanded droop-controlled microgrid’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 797807.
    4. 4)
      • 14. Li, Z., Duan, Z., Chen, G., et al: ‘Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2010, 57, (1), pp. 213224.
    5. 5)
      • 10. Bidram, A., Davoudi, A.: ‘Hierarchical structure of microgrids control system’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 19631976.
    6. 6)
      • 37. Rocabert, J., Luna, A., Blaabjerg, F., et al: ‘Control of power converters in ac microgrids’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 47344749.
    7. 7)
      • 24. Simpson Porco, J.W., Dorfler, F., Bullo, F., et al: ‘Stability, power sharing, & distributed secondary control in droop-controlled microgrids’. 2013 IEEE Int. Conf. on Smart Grid Communications (SmartGridComm), Vancouver, BC, Canada, 2013, pp. 672677.
    8. 8)
      • 25. Shafiee, Q., Nasirian, V., Guerrero, J.M., et al: ‘Team-oriented adaptive droop control for autonomous ac microgrids’. 40th Annual Conf. of the IEEE Industrial Electronics Society, IECON 2014, Dallas, TX, USA, 2014, pp. 18611867.
    9. 9)
      • 30. Xu, Y., Zhang, W., Liu, W., et al: ‘Distributed subgradient-based coordination of multiple renewable generators in a microgrid’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 2333.
    10. 10)
      • 23. Nasirian, V., Shafiee, Q., Guerrero, J.M., et al: ‘Droop-free distributed control for ac microgrids’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 16001617.
    11. 11)
      • 2. Lasseter, R.H.: ‘Microgrids’. Power Engineering Society Winter Meeting, New York, USA, 2002, vol. 1, pp. 305308.
    12. 12)
      • 12. Parlak, K.S., Özdemir, M., Aydemir, M.T.: ‘Active and reactive power sharing and frequency restoration in a distributed power system consisting of two ups units’, Int. J. Electr. Power Energy Syst., 2009, 31, (5), pp. 220226.
    13. 13)
      • 13. Xin, H., Qu, Z., Seuss, J., et al: ‘A self-organizing strategy for power flow control of photovoltaic generators in a distribution network’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 14621473.
    14. 14)
      • 15. Guo, F., Wen, C., Mao, J., et al: ‘Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 43554364.
    15. 15)
      • 7. Guerrero, J.M., Vasquez, J.C., Matas, J., et al: ‘Hierarchical control of droop-controlled ac and dc microgrids a general approach toward standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172.
    16. 16)
      • 27. Olfati Saber, R., Murray, R.M.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533.
    17. 17)
      • 42. Kia, S.S., Cortés, J., Martinez, S.: ‘Dynamic average consensus under limited control authority and privacy requirements’, Int. J. Robust Nonlinear Control, 2015, 25, (13), pp. 19411966.
    18. 18)
      • 3. Farhangi, H.: ‘The path of the smart grid’, IEEE Power Energy Mag., 2010, 8, (1), pp. 1828.
    19. 19)
      • 11. Guerrero, J.M., Loh, P.C., Lee, T.L., et al: ‘Advanced control architectures for intelligent microgrids – Part ii: power quality, energy storage, and ac/dc microgrids’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 12631270.
    20. 20)
      • 29. Zhang, W., Xu, Y., Liu, W., et al: ‘Fully distributed coordination of multiple dfigs in a microgrid for load sharing’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 806815.
    21. 21)
      • 28. Ahumada, C., Cárdenas, R., Sáez, D., et al: ‘Secondary control strategies for frequency restoration in islanded microgrids with consideration of communication delays’, IEEE Trans. Smart Grid, 2016, 7, (3), pp. 14301441.
    22. 22)
      • 22. Bidram, A., Davoudi, A., Lewis, F.L.: ‘A multiobjective distributed control framework for islanded ac microgrids’, IEEE Trans. Ind. Inf., 2014, 10, (3), pp. 17851798.
    23. 23)
      • 9. Vasquez, J.C., Guerrero, J.M., Miret, J., et al: ‘Hierarchical control of intelligent microgrids’, IEEE Ind. Electron. Mag., 2010, 4, (4), pp. 2329.
    24. 24)
      • 34. Pogaku, N., Prodanovic, M., Green, T.C.: ‘Modeling, analysis and testing of autonomous operation of an inverter-based microgrid’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 613625.
    25. 25)
      • 39. Moradi, M.H., Eskandari, M., Hosseinian, S.M.: ‘Cooperative control strategy of energy storage systems and micro sources for stabilizing microgrids in different operation modes’, Int. J. Electr. Power Energy Syst., 2016, 78, pp. 390400.
    26. 26)
      • 1. Hatziargyriou, N., Asano, H., Iravani, R., et al: ‘Microgrids’, IEEE Power Energy Mag., 2007, 5, (4), pp. 7894.
    27. 27)
      • 4. Green, T., Prodanović, M.: ‘Control of inverter-based micro-grids’, Electr. Power Syst. Res., 2007, 77, (9), pp. 12041213.
    28. 28)
      • 26. Yazdanian, M., Mehrizi Sani, A.: ‘Distributed control techniques in microgrids’, IEEE Trans. Smart Grid, 2014, 5, (6), pp. 29012909.
    29. 29)
      • 38. Lou, G., Gu, W., Xu, Y., et al: ‘Distributed mpc-based secondary voltage control scheme for autonomous droop-controlled microgrids’, IEEE Trans. Sustain. Energy, 2017, 8, (2), pp. 792804.
    30. 30)
      • 43. Zhao, T., Ding, Z.: ‘Distributed finite-time optimal resource management for microgrids based on multi-agent framework’, IEEE Trans. Ind. Electron., 2017, 65, (8), pp. 65716580.
    31. 31)
      • 5. Katiraei, F., Iravani, R., Hatziargyriou, N., et al: ‘Microgrids management’, IEEE Power Energy Mag., 2008, 6, (3), pp. 5465.
    32. 32)
      • 32. Shafiee, Q., Nasirian, V., Vasquez, J.C., et al: ‘A multi-functional fully distributed control framework for ac microgrids’, IEEE Trans. Smart Grid, 2016, 9, (4), pp. 32473258.
    33. 33)
      • 40. Shrivastava, S., Subudhi, B., Das, S.: ‘Consensus-based voltage and frequency restoration scheme for inertia-less islanded microgrid with communication latency’. Region 10 Conf., TENCON, Penang, 21–24 November 2017, pp. 745750.
    34. 34)
      • 36. Zuo, S., Davoudi, A., Song, Y., et al: ‘Distributed finite-time voltage and frequency restoration in islanded ac microgrids’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 59885997.
    35. 35)
      • 6. Lopes, J.P., Moreira, C., Madureira, A.: ‘Defining control strategies for microgrids islanded operation’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 916924.
    36. 36)
      • 18. Bidram, A., Davoudi, A., Lewis, F.L., et al: ‘Distributed cooperative secondary control of microgrids using feedback linearization’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 34623470.
    37. 37)
      • 19. Schiffer, J., Seel, T., Raisch, J., et al: ‘Voltage stability and reactive power sharing in inverter-based microgrids with consensus-based distributed voltage control’, IEEE Trans. Control Syst. Technol., 2016, 24, (1), pp. 96109.
    38. 38)
      • 31. Shafiee, Q., Guerrero, J.M., Vasquez, J.C.: ‘Distributed secondary control for islanded microgrids-a novel approach’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 10181031.
    39. 39)
      • 17. Bidram, A., Davoudi, A., Lewis, F.L., et al: ‘Secondary control of microgrids based on distributed cooperative control of multi-agent systems’, IET Gener. Transm. Distrib., 2013, 7, (8), pp. 822831.
    40. 40)
      • 20. Cady, S.T., Domnguez Garca, A.D.: ‘Distributed generation control of small-footprint power systems’. North American Power Symp. (NAPS), Champaign, IL, USA, 2012, pp. 16.
    41. 41)
      • 21. Simpson Porco, J.W., Dörfler, F., Bullo, F.: ‘Synchronization and power sharing for droop-controlled inverters in islanded microgrids’, Automatica, 2013, 49, (9), pp. 26032611.
    42. 42)
      • 8. Guerrero, J.M., Chandorkar, M., Lee, T.L., et al: ‘Advanced control architectures for intelligent microgrids – Part i: decentralized and hierarchical control’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 12541262.
    43. 43)
      • 41. Qu, Z., Wang, J., Hull, R.A.: ‘Cooperative control of dynamical systems with application to autonomous vehicles’, IEEE Trans. Autom. Control, 2008, 53, (4), pp. 894911.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2018.0020
Loading

Related content

content/journals/10.1049/iet-stg.2018.0020
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address