Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess On statistical power grid observability under communication constraints (invited paper)

Phasor Measurement Units (PMUs) have enabled real-time power grid monitoring and control applications realizing an integrated power grid and communication system. The communication network formed by PMUs has strict latency requirements. If PMU measurements cannot reach the control centre within the latency bound, they will be invalid for calculation and may compromise the observability of the whole power grid as well as related applications. To address this issue, this study proposes a model to account for the power grid observability under communication constraints, where effective capacity is adopted to perform a cross-layer statistical analysis in the communication system. Based on this model, three algorithms are proposed for improving power grid observability, which are an observability redundancy algorithm, an observability sensitivity algorithm and an observability probability algorithm. These three algorithms aim at enhancing the power system observability via the optimal communication resource allocation for a given grid infrastructure. Case studies show that the proposed algorithms can improve the power system performance under constrained wireless communication resources.

References

    1. 1)
      • 36. Ni, J., Zhang, K., Alharbi, K., et al: ‘Differentially private smart metering with fault tolerance and range-based filtering’, IEEE Trans. Smart Grid, 2017, 8, (5), pp. 24832493.
    2. 2)
      • 20. Zhang, X., Gao, Y., Zhang, G., et al: ‘CDMA2000 cellular network based SCADA system’. Proc. Int. Conf. on Power System Technology, Kunming, China, 2002, vol. 2, pp. 13011306.
    3. 3)
      • 11. Gungor, V. C., Sahin, D., Kocak, T., et al: ‘Smart grid technologies: communication technologies and standards’, IEEE Trans. Ind. Inf., 2011, 7, (4), pp. 529539.
    4. 4)
      • 6. Kekatos, V., Giannakis, G. B., Wollenberg, B.: ‘Optimal placement of phasor measurement units via convex relaxation’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 15211530.
    5. 5)
      • 31. Olver, F. W., Lozier, D. W., Boisvert, R. F., et al: ‘NIST handbook of mathematical functions’ (Cambridge University Press, Washington, DC, 2010).
    6. 6)
      • 2. Khajeh, K. G., Bashar, E., Rad, A. M., et al: ‘Integrated model considering effects of zero injection buses and conventional measurements on optimal PMU placement’, IEEE Trans. Smart Grid, 2017, 8, (2), pp. 10061013.
    7. 7)
      • 12. Akyol, B. A., Kirkham, H., Clements, S. L., et al: ‘A survey of wireless communications for the electric power system’. Tech. Rep., Pacific Northwest National Laboratory (PNNL), Richland, WA (USA), 2010.
    8. 8)
      • 16. Castello, P., Ferrari, P., Flammini, A., et al: ‘A distributed pmu for electrical substations with wireless redundant process bus’, IEEE Trans. Instrum. Meas., 2015, 64, (5), pp. 11491157.
    9. 9)
      • 5. Azizi, S., Dobakhshari, A. S., Sarmadi, S. A. N., et al: ‘Optimal PMU placement by an equivalent linear formulation for exhaustive search’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 174182.
    10. 10)
      • 30. Gursoy, M. C.: ‘MIMO wireless communications under statistical queueing constraints’, IEEE Trans. Inf. Theory, 2011, 57, (9), pp. 58975917.
    11. 11)
      • 3. Phadke, A. G., Thorp, J. S.: ‘Synchronized phasor measurements and their applications’ (Springer, New York, USA, 2008).
    12. 12)
      • 37. IEC 61850-5 2013: ‘Communication networks and systems for power utility automation’, International Electrotechnical Commission Std., 2013.
    13. 13)
      • 35. Hong, Y., Liu, W. M., Wang, L.: ‘Privacy preserving smart meter streaming against information leakage of appliance status’, IEEE Trans. Inf. Forensics Sec., 2017, 12, (9), pp. 22272241.
    14. 14)
      • 21. Tang, J., Zhang, X.: ‘Cross-layer modeling for quality of service guarantees over wireless links’, IEEE Trans. Wireless Commun., 2007, 6, (12), pp. 45044512.
    15. 15)
      • 7. Yang, Q., An, D., Min, R., et al: ‘On optimal PMU placement-based defense against data integrity attacks in smart grid’, IEEE Trans. Inf. Forensics Sec., 2017, 12, (7), pp. 17351750.
    16. 16)
      • 27. You, M., Sun, H., Jiang, J., et al: ‘Unified framework for the effective rate analysis of wireless communication systems over MISO fading channels’, IEEE Trans. Commun., 2017, 65, (4), pp. 17751785.
    17. 17)
      • 1. Routtenberg, T., Concepcion, R., Tong, L.: ‘PMU-based detection of voltage imbalances with tolerance constraints’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 484494.
    18. 18)
      • 25. Matthaiou, M., Alexandropoulos, G. C., Ngo, H. Q., et al: ‘Analytic framework for the effective rate of MISO fading channels’, IEEE Trans. Commun., 2012, 60, (6), pp. 17411751.
    19. 19)
      • 32. Khalek, A. A., Caramanis, C., Heath, R.W.: ‘Delay-constrained video transmission: quality-driven resource allocation and scheduling’, IEEE J. Sel. Top. Signal Process., 2015, 9, (1), pp. 6075.
    20. 20)
      • 23. Qiao, D., Gursoy, M., Velipasalar, S.: ‘Effective capacity of two-hop wireless communication systems’, IEEE Trans. Inf. Theory, 2013, 59, (2), pp. 873885.
    21. 21)
      • 38. IEEE standard for synchrophasor data transfer for power systems’, IEEE Std C37.118.2-2011 (Revision of IEEE Std C37.118-2005), December 2011, pp. 153.
    22. 22)
      • 18. Mollah, M. B., Ullah, M. A., Mozumder, M. Y., et al: ‘Concept design for SCADA system using cognitive radio based IEEE 802.22 for power system’. 2012 IEEE CYBER, Bangkok, Thailand, May 2012, pp. 109114.
    23. 23)
      • 9. Bei, X., Yoon, Y. J., Abur, A.: ‘Optimal placement and utilization of phasor measurements for state estimation’, PSERC Publ., 2005, 2, pp. 959964.
    24. 24)
      • 28. Wu, D., Negi, R.: ‘Effective capacity: a wireless link model for support of quality of service’, IEEE Trans. Wireless Commun., 2003, 2, (4), pp. 630643.
    25. 25)
      • 8. Mohammadi, M. B., Hooshmand, R.-A., Fesharaki, F. H.: ‘A new approach for optimal placement of PMUs and their required communication infrastructure in order to minimize the cost of the WAMS’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 8493.
    26. 26)
      • 22. Agarwal, S., De, S., Kumar, S., et al: ‘QoS-aware downlink cooperation for cell-edge and handoff users’, IEEE Trans. Veh. Technol., 2015, 64, (6), pp. 25122527.
    27. 27)
      • 10. Abbasy, N. H., Ismail, H. M.: ‘A unified approach for the optimal PMU location for power system state estimation’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 806813.
    28. 28)
      • 24. Yang, Y., Aissa, S., Salama, K.: ‘Spectrum band selection in delay-QoS constrained cognitive radio networks’, IEEE Trans. Veh. Technol., 2015, 64, (7), pp. 29252937.
    29. 29)
      • 13. IEEE guide for the interoperability of energy storage systems integrated with the electric power infrastructure’, IEEE Std 2030.2-2015, June 2015, pp. 1138.
    30. 30)
      • 39. Kansal, P., Bose, A.: ‘Bandwidth and latency requirements for smart transmission grid applications’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 13441352.
    31. 31)
      • 17. Kudeshia, A., Gupta, V., Valecha, N., et al: ‘Total variation measurement decoding (tvmd) for reliable wireless transmission of pmu measurements in smart grids’. 2017 IEEE 85th VTC Spring, Sydney, NSW, Australia, June 2017, pp. 15.
    32. 32)
      • 4. Madani, V., Parashar, M., Giri, J., et al: ‘PMU placement consideration sąła roadmap for optimal PMU placement’. 2011 IEEE/PES PSCE, Phoenix, AZ, USA, 2011, pp. 17.
    33. 33)
      • 14. Gharavi, H., Hu, B.: ‘Scalable synchrophasors communication network design and implementation for real-time distributed generation grid’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 25392550.
    34. 34)
      • 34. Bertsekas, D., Nedić, A., Ozdaglar, A.: ‘Convex analysis and optimization’, ser. Athena Scientific optimization and computation series, (Athena Scientific, Belmont, Mass, 2003).
    35. 35)
      • 19. Mollah, M. B., Islam, S. S.: ‘Towards IEEE 802.22 based SCADA system for future distributed system’. 2012ICIEV, Dhaka, Bangladesh, May 2012, pp. 10751080.
    36. 36)
      • 26. Li, X., Li, J., Li, L., et al: ‘Effective rate of MISO systems over κμ shadowed fading channels’, IEEE Access, 2017, 5, pp. 1060510611.
    37. 37)
      • 29. Chang, C.-S., Thomas, J. A.: ‘Effective bandwidth in high-speed digital networks’, IEEE J. Sel. Areas Commun., 1995, 13, (6), pp. 10911100.
    38. 38)
      • 33. You, M., Liu, Q., Jiang, J., et al: ‘Power grid observability redundancy analysis under communication constraints’. 2017 6th IEEE/CIC ICCC, Qingdao, China, October 2017, pp. 15.
    39. 39)
      • 15. Ghosh, D., Ghose, T., Mohanta, D. K.: ‘Communication feasibility analysis for smart grid with phasor measurement units’, IEEE Trans. Ind. Inf., 2013, 9, (3), pp. 14861496.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2018.0009
Loading

Related content

content/journals/10.1049/iet-stg.2018.0009
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address