http://iet.metastore.ingenta.com
1887

access icon openaccess On statistical power grid observability under communication constraints (invited paper)

  • HTML
    223.7373046875Kb
  • PDF
    1.2955551147460938MB
  • XML
    180.060546875Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-stg/1/2/IET-STG.2018.0009.html;jsessionid=xms6ycx40yd1.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-stg.2018.0009&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Routtenberg, T., Concepcion, R., Tong, L.: ‘PMU-based detection of voltage imbalances with tolerance constraints’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 484494.
    2. 2)
      • 2. Khajeh, K. G., Bashar, E., Rad, A. M., et al: ‘Integrated model considering effects of zero injection buses and conventional measurements on optimal PMU placement’, IEEE Trans. Smart Grid, 2017, 8, (2), pp. 10061013.
    3. 3)
      • 3. Phadke, A. G., Thorp, J. S.: ‘Synchronized phasor measurements and their applications’ (Springer, New York, USA, 2008).
    4. 4)
      • 4. Madani, V., Parashar, M., Giri, J., et al: ‘PMU placement consideration sąła roadmap for optimal PMU placement’. 2011 IEEE/PES PSCE, Phoenix, AZ, USA, 2011, pp. 17.
    5. 5)
      • 5. Azizi, S., Dobakhshari, A. S., Sarmadi, S. A. N., et al: ‘Optimal PMU placement by an equivalent linear formulation for exhaustive search’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 174182.
    6. 6)
      • 6. Kekatos, V., Giannakis, G. B., Wollenberg, B.: ‘Optimal placement of phasor measurement units via convex relaxation’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 15211530.
    7. 7)
      • 7. Yang, Q., An, D., Min, R., et al: ‘On optimal PMU placement-based defense against data integrity attacks in smart grid’, IEEE Trans. Inf. Forensics Sec., 2017, 12, (7), pp. 17351750.
    8. 8)
      • 8. Mohammadi, M. B., Hooshmand, R.-A., Fesharaki, F. H.: ‘A new approach for optimal placement of PMUs and their required communication infrastructure in order to minimize the cost of the WAMS’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 8493.
    9. 9)
      • 9. Bei, X., Yoon, Y. J., Abur, A.: ‘Optimal placement and utilization of phasor measurements for state estimation’, PSERC Publ., 2005, 2, pp. 959964.
    10. 10)
      • 10. Abbasy, N. H., Ismail, H. M.: ‘A unified approach for the optimal PMU location for power system state estimation’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 806813.
    11. 11)
      • 11. Gungor, V. C., Sahin, D., Kocak, T., et al: ‘Smart grid technologies: communication technologies and standards’, IEEE Trans. Ind. Inf., 2011, 7, (4), pp. 529539.
    12. 12)
      • 12. Akyol, B. A., Kirkham, H., Clements, S. L., et al: ‘A survey of wireless communications for the electric power system’. Tech. Rep., Pacific Northwest National Laboratory (PNNL), Richland, WA (USA), 2010.
    13. 13)
      • 13. IEEE guide for the interoperability of energy storage systems integrated with the electric power infrastructure’, IEEE Std 2030.2-2015, June 2015, pp. 1138.
    14. 14)
      • 14. Gharavi, H., Hu, B.: ‘Scalable synchrophasors communication network design and implementation for real-time distributed generation grid’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 25392550.
    15. 15)
      • 15. Ghosh, D., Ghose, T., Mohanta, D. K.: ‘Communication feasibility analysis for smart grid with phasor measurement units’, IEEE Trans. Ind. Inf., 2013, 9, (3), pp. 14861496.
    16. 16)
      • 16. Castello, P., Ferrari, P., Flammini, A., et al: ‘A distributed pmu for electrical substations with wireless redundant process bus’, IEEE Trans. Instrum. Meas., 2015, 64, (5), pp. 11491157.
    17. 17)
      • 17. Kudeshia, A., Gupta, V., Valecha, N., et al: ‘Total variation measurement decoding (tvmd) for reliable wireless transmission of pmu measurements in smart grids’. 2017 IEEE 85th VTC Spring, Sydney, NSW, Australia, June 2017, pp. 15.
    18. 18)
      • 18. Mollah, M. B., Ullah, M. A., Mozumder, M. Y., et al: ‘Concept design for SCADA system using cognitive radio based IEEE 802.22 for power system’. 2012 IEEE CYBER, Bangkok, Thailand, May 2012, pp. 109114.
    19. 19)
      • 19. Mollah, M. B., Islam, S. S.: ‘Towards IEEE 802.22 based SCADA system for future distributed system’. 2012ICIEV, Dhaka, Bangladesh, May 2012, pp. 10751080.
    20. 20)
      • 20. Zhang, X., Gao, Y., Zhang, G., et al: ‘CDMA2000 cellular network based SCADA system’. Proc. Int. Conf. on Power System Technology, Kunming, China, 2002, vol. 2, pp. 13011306.
    21. 21)
      • 21. Tang, J., Zhang, X.: ‘Cross-layer modeling for quality of service guarantees over wireless links’, IEEE Trans. Wireless Commun., 2007, 6, (12), pp. 45044512.
    22. 22)
      • 22. Agarwal, S., De, S., Kumar, S., et al: ‘QoS-aware downlink cooperation for cell-edge and handoff users’, IEEE Trans. Veh. Technol., 2015, 64, (6), pp. 25122527.
    23. 23)
      • 23. Qiao, D., Gursoy, M., Velipasalar, S.: ‘Effective capacity of two-hop wireless communication systems’, IEEE Trans. Inf. Theory, 2013, 59, (2), pp. 873885.
    24. 24)
      • 24. Yang, Y., Aissa, S., Salama, K.: ‘Spectrum band selection in delay-QoS constrained cognitive radio networks’, IEEE Trans. Veh. Technol., 2015, 64, (7), pp. 29252937.
    25. 25)
      • 25. Matthaiou, M., Alexandropoulos, G. C., Ngo, H. Q., et al: ‘Analytic framework for the effective rate of MISO fading channels’, IEEE Trans. Commun., 2012, 60, (6), pp. 17411751.
    26. 26)
      • 26. Li, X., Li, J., Li, L., et al: ‘Effective rate of MISO systems over κμ shadowed fading channels’, IEEE Access, 2017, 5, pp. 1060510611.
    27. 27)
      • 27. You, M., Sun, H., Jiang, J., et al: ‘Unified framework for the effective rate analysis of wireless communication systems over MISO fading channels’, IEEE Trans. Commun., 2017, 65, (4), pp. 17751785.
    28. 28)
      • 28. Wu, D., Negi, R.: ‘Effective capacity: a wireless link model for support of quality of service’, IEEE Trans. Wireless Commun., 2003, 2, (4), pp. 630643.
    29. 29)
      • 29. Chang, C.-S., Thomas, J. A.: ‘Effective bandwidth in high-speed digital networks’, IEEE J. Sel. Areas Commun., 1995, 13, (6), pp. 10911100.
    30. 30)
      • 30. Gursoy, M. C.: ‘MIMO wireless communications under statistical queueing constraints’, IEEE Trans. Inf. Theory, 2011, 57, (9), pp. 58975917.
    31. 31)
      • 31. Olver, F. W., Lozier, D. W., Boisvert, R. F., et al: ‘NIST handbook of mathematical functions’ (Cambridge University Press, Washington, DC, 2010).
    32. 32)
      • 32. Khalek, A. A., Caramanis, C., Heath, R.W.: ‘Delay-constrained video transmission: quality-driven resource allocation and scheduling’, IEEE J. Sel. Top. Signal Process., 2015, 9, (1), pp. 6075.
    33. 33)
      • 33. You, M., Liu, Q., Jiang, J., et al: ‘Power grid observability redundancy analysis under communication constraints’. 2017 6th IEEE/CIC ICCC, Qingdao, China, October 2017, pp. 15.
    34. 34)
      • 34. Bertsekas, D., Nedić, A., Ozdaglar, A.: ‘Convex analysis and optimization’, ser. Athena Scientific optimization and computation series, (Athena Scientific, Belmont, Mass, 2003).
    35. 35)
      • 35. Hong, Y., Liu, W. M., Wang, L.: ‘Privacy preserving smart meter streaming against information leakage of appliance status’, IEEE Trans. Inf. Forensics Sec., 2017, 12, (9), pp. 22272241.
    36. 36)
      • 36. Ni, J., Zhang, K., Alharbi, K., et al: ‘Differentially private smart metering with fault tolerance and range-based filtering’, IEEE Trans. Smart Grid, 2017, 8, (5), pp. 24832493.
    37. 37)
      • 37. IEC 61850-5 2013: ‘Communication networks and systems for power utility automation’, International Electrotechnical Commission Std., 2013.
    38. 38)
      • 38. IEEE standard for synchrophasor data transfer for power systems’, IEEE Std C37.118.2-2011 (Revision of IEEE Std C37.118-2005), December 2011, pp. 153.
    39. 39)
      • 39. Kansal, P., Bose, A.: ‘Bandwidth and latency requirements for smart transmission grid applications’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 13441352.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2018.0009
Loading

Related content

content/journals/10.1049/iet-stg.2018.0009
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address