Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Development of an inducible three colour bacterial water colour system

Development of an inducible three colour bacterial water colour system

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Synthetic Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Here we present the work of the 2006 University of Arizona team in the iGEM (international Genetically Engineered Machine) competition sponsored by MIT. Our aim was to develop an inducible water colour system for painting bacteria in three colours. Using BioBricks, a plasmid was designed for insertion into E. coli which would allow the bacterium to respond to each of three different chemical inducers by producing yellow, cyan or red fluorescent proteins. In principle the inducers could be deposited on a bacterial lawn using a high-resolution printer so that three colour images could be produced with a spatial resolution matching the size of the bacterium. This could be the first step towards producing a bacterial lawn that behaves like a canvas for watercolour painting or eventually a three-colour television set. The application connects with current interest in precise control of cellular response desired in biosensors and bioengineered materials. The University of Arizona iGEM team called the ‘Cell Raisers’ was assembled in May 2006 and worked enthusiastically throughout the summer. The team was comprised of six undergraduates (Tyler Brown, Brian Heinze, Patrick Hollinger, Josh Kittleson, Kevin MacDow, and Dan Reavis), one graduate student (Carlos Chang), and two faculty members (Joan Curry and Mark Riley). This proved to be an ambitious project, and while the final goal was not fully realised, first steps were made in terms of design, plasmid construction and bacterial deposition with an inkjet printer. Patrick Hollinger and Brian Heinze gave the technical presentation to judges and competing teams on Saturday, November 4, 2006 in MIT's Stata Center. The team also presented a poster that was viewed in the evening after all the presentations. For their efforts, the University of Arizona team received honourable mention with special consideration: ‘For progress toward synthetic biology in three colours’.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stb_20070015
Loading

Related content

content/journals/10.1049/iet-stb_20070015
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address