Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Efficient implementation of robust adaptive beamforming based on worst-case performance optimisation

Efficient implementation of robust adaptive beamforming based on worst-case performance optimisation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Traditional adaptive beamforming methods undergo serious performance degradation when a mismatch between the presumed and the actual array responses to the desired source occurs. Such a mismatch can be caused by desired look direction errors, distortion of antenna shape, scattering due to multipath, signal fading as well as other errors. This mismatch entails robust design of the adaptive beamforming methods. Here, the robust minimum variance distortionless response (MVDR) beamforming based on worst-case (WC) performance optimisation is efficiently implemented using a novel ad hoc adaptive technique. A new efficient implementation of the robust MVDR beamformer with a single WC constraint is developed. Additionally, the WC optimisation formulation is generalised to include multiple WC constraints which engender a robust linearly constrained minimum variance (LCMV) beamformer with multiple-beam WC (MBWC) constraints. Moreover, the developed LCMV beamformer with MBWC constraints is converted to a system of nonlinear equations and is efficiently solved using a Newton-like method. The first proposed implementation requires low computational complexity compared with the existing techniques. Furthermore, the weight vectors of the two developed adaptive beamformers are iteratively updated using iterative gradient minimisation algorithms which eliminate the estimation of the sample matrix inversion. Several scenarios including angle-of-incidence mismatch and multipath scattering with small and large angular spreads are simulated to study the robustness of the developed algorithms.

References

    1. 1)
      • S. Attallah , K. Abed-Meraim . Fast algorithms for subspace tracking. IEEE Trans. Signal Process. Lett. , 7 , 203 - 206
    2. 2)
      • Elnashar, A.: `Robust adaptive beamforming', ACE2 Network of Excellence Workshop on Smart Antennas, MIMO Systems and Related Technologies, 8 June 2006, Mykonos, Greece.
    3. 3)
      • A.-J. van der Veen . Algebraic methods for deterministic blind beamforming. Proc. IEEE , 10 , 1987 - 2008
    4. 4)
      • Z. Tian , K.L. Bell , H.L.A. Van Trees . Recursive least squares implementation for LCMP beamforming under quadratic constraint. IEEE Trans. Signal Process. , 6 , 1138 - 1145
    5. 5)
      • S. Cui , M. Kisialiou , Z.-Q. Luo , Z. Ding . Robust blind multiuser detection against signature waveform mismatch based on second order cone programming. IEEE Trans. Wirel. Commun. , 4 , 1285 - 1291
    6. 6)
      • F. Vincent , O. Besson . Steering vector errors and diagonal loading. IEE Proc., Radar Sonar Navig. , 6 , 337 - 343
    7. 7)
      • A.B. Gershman , Z.-Q. Luo , S. Shahbazpanahi , J. Li , P. Stoica . (2006) Robust adaptive beamforming based on worst-case performance optimization, Robust adaptive beamforming.
    8. 8)
      • D. David , L.J. Feldman . A projection approach for robust adaptive beamforming. IEEE Trans. Signal Process. , 4 , 867 - 876
    9. 9)
      • J.F. Sturm . Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. , 625 - 653
    10. 10)
      • S. Shahbazpanahi , A.B. Gershman , Z.Q. Luo , K.M. Wong . Robust adaptive beamforming for general-rank signal model. IEEE Trans. Signal Process. , 9 , 2257 - 2269
    11. 11)
      • N.R. Conn , N.I.M. Gould , Ph.L. Toint . (2000) Trust-region methods, MPS/SIAM series on optimization.
    12. 12)
      • R.B. Ertel , P. Cardieri , K.W. Sowerby , T.S. Rappaport , J.H. Reed . Overview of spatial channel models for antenna communication systems. IEEE Pers. Commun. , 1 , 10 - 22
    13. 13)
      • K. Zarifi , S. Shahbazpanahi , A.B. Gershman , Z.-Q. Luo . Robust blind multiuser detection based on the worst-case performance optimization of the MMSE receiver. IEEE Trans. Signal Process. , 1 , 295 - 205
    14. 14)
      • A. Elnashar , S. Elnoubi , H. Elmikati . Further study on robust adaptive beamforming with optimum diagonal loading. IEEE Trans. Antennas Propag. , 12 , 3647 - 3658
    15. 15)
      • R.G. Lorenz , S.P. Boyd . Robust minimum variance beamforming. IEEE Trans. Signal Process. , 5 , 1684 - 1696
    16. 16)
      • A.B. Gershman . Robust adaptive beamforming in sensor arrays. AEU, Int. J. Electron. Commun. , 6 , 305 - 314
    17. 17)
      • S. Shahbazpanahi , A.B. Gershman . Robust blind multiuser detection for synchronous CDMA system using worst-case performance. IEEE Trans. Wirel. Commun , 6 , 2232 - 2245
    18. 18)
      • S. Choi , D. Shim . A novel adaptive beamforming algorithm for smart antenna system in a CDMA mobile communication environment. IEEE Trans. Veh. Technol. , 5 , 1793 - 1806
    19. 19)
      • Elnashar, A., Elnoubi, S., Elmikati, H.: `Robust adaptive beamforming with variable diagonal loading', Proc. 6th IEE Int. Conf. 3G & Beyond (3G 2005), November 2005, London, UK, p. 489–493.
    20. 20)
      • O. Besson , F. Vincent . Performance analysis of beamformers using generalized loading of the covariance matrix in the presence of random steering vector errors. IEEE Trans. Signal Process. , 2 , 452 - 459
    21. 21)
      • M.J.D. Powell , P. Rabinowitz . (1988) A Fortran subroutine for solving systems of nonlinear algebraic equations, Numerical methods for nonlinear algebraic equations.
    22. 22)
      • A. Elnashar , S. Elnoubi , H. El-Makati . Performance analysis of blind adaptive MOE multiuser receivers using inverse QRD-RLS algorithm. IEEE Trans. Circuits Syst. I , 1 , 398 - 411
    23. 23)
      • J. Li , P. Stoica . (2005) Robust adaptive beamforming.
    24. 24)
      • S.A. Vorobyov , A.B. Gershman , Z.Q. Luo . Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem. IEEE Trans. Signal Process. , 2 , 313 - 324
    25. 25)
      • J. Li , P. Stoica , Z. Wang . On robust Capon beamforming and diagonal loading. IEEE Trans. Signal Proces. , 7 , 1702 - 1715
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr_20070162
Loading

Related content

content/journals/10.1049/iet-spr_20070162
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address