Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems

Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The effects of using frequency-domain approximation in numerical simulation of fractional-order systems are analytically studied. The main aim in the study is to determine the number, location and stability property of the equilibriums in a fractional-order system and its frequency-based approximating counterpart. The comparison shows that the original fractional-order system and its frequency-based approximation may differ from each other in some or all issues considered in the study. Unfortunately, these differences can lead to wrong consequences in some special cases such as detecting chaos in the fractional-order systems. It is shown that using the frequency-domain approximation methods can conceal chaotic behaviour for a chaotic fractional-order system or display chaos for a non-chaotic one. Therefore one should be careful and conservative in using these methods to recognise chaos in the fractional-order systems.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • J.G. Lu . Chaotic dynamics and synchronization of fractional order Arneodo's systems. Chaos Solitons Fractals , 4 , 1125 - 1133
    6. 6)
      • Duan, G.R.: `Parametric control systems design: theory and applications', SICE-ICASE Int. Joint Conf., October 2006, Korea, p. I-15–I-23.
    7. 7)
    8. 8)
      • C.P. Li , G.J. Peng . Chaos in Chen's system with a fractional order. Chaos Solitons Fractals , 2 , 443 - 450
    9. 9)
    10. 10)
      • C.P. Silva . Shil'nikov's theorem – a tutorial. IEEE Trans. Circuits Syst. I , 675 - 682
    11. 11)
    12. 12)
      • Arena, P., Caponetto, R., Fortuna, L., Porto, D.: `Chaos in a fractional order Duffing system', Proc. ECCTD, 1997, Budapest, p. 1259–1262.
    13. 13)
    14. 14)
      • J.S.H. Tsai , T.H. Chien , S.M. Guo , Y.P. Chang , L.S. Shieh . State-space self-tuning control for stochastic chaotic fractional order systems. IEEE Trans. Circuits Syst. I , 3 , 632 - 642
    15. 15)
      • I. Podlubny . (1999) Fractional differential equations.
    16. 16)
    17. 17)
      • Y. Wang , C.P. Li . Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle?. Phys. Lett. A , 414 - 419
    18. 18)
      • R.L. Mishkov . Generalization of the formula of Faà di Bruno for a composite function with a vector argument. Int. J. Math. Math. Sci , 7 , 481 - 491
    19. 19)
    20. 20)
      • E. Ahmed , A.M.A. El-Sayed , H.A.A. El-Saka . Equilibrium points, stability and numerical solutions of fractional order predator–prey and rabies models. J. Math. Anal. Appl. , 542 - 553
    21. 21)
    22. 22)
      • W.P. Johnson . The curious history of Faà di Bruno's formula. Am. Math. Mon. , 217 - 234
    23. 23)
      • M.S. Tavazoei , M. Haeri . A necessary condition for double scroll attractorexistence in fractional order systems. Phys. Lett. A , 102 - 113
    24. 24)
      • T.T. Hartley , C.F. Lorenzo , H.K. Qammer . Chaos in a fractional order Chua's system. IEEE Trans. Circuits Syst. I , 485 - 490
    25. 25)
    26. 26)
      • C.P. Li , W.H. Deng . Chaos synchronization of fractional-order differential system. Int. J. Mod. Phys. B , 7 , 791 - 803
    27. 27)
      • C. Li , G. Chen . Chaos and hyperchaos in the fractional order Rössler equations. Physica A: Stat. Mech. Appl. , 55 - 61
    28. 28)
      • S. Roman . The formula of Faà di Bruno. Am. Math. Mon. , 805 - 809
    29. 29)
      • I. Petras , I. Podlubny , P. O'Leary , L. Dorcak , B. Vinagre . (2002) Analogue realization of fractional order controllers.
    30. 30)
      • W. Deng . Short memory principle and a predictor–corrector approach for fractional differential equations. J. Comput. Appl. Math. , 1 , 174 - 188
    31. 31)
    32. 32)
      • I. Grigorenko , E. Grigorenko . Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett.
    33. 33)
      • Matignon, D.: `Stability results for fractional differential equations with applications to control processing', Computational Engineering in Systems Applications, IMACS, IEEE-SMC, July 1996, Lille, France, 2, p. 963–968.
    34. 34)
    35. 35)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr_20070053
Loading

Related content

content/journals/10.1049/iet-spr_20070053
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address