© The Institution of Engineering and Technology
A new family of dualtree based dyadic complex (approximate analytic) wavelet tight frames that is an extension of higher density discrete wavelet transform (DWT) introduced by Selesnick (in A Higherdensity DWT, IEEE Transaction on Signal Processing) is proposed. Because the proposed wavelet frames are good combinations of the higherdensity DWT and the dual tree complex wavelet transform, the corresponding new wavelet transform can be potentially applied to the applications when properties of both transforms are required simultaneously. The design problem to obtain finite impulse response filters satisfying the numerous constraints imposed by this new wavelet transform is addressed. The proposed wavelet frames are compactly supported, nearly shiftinvariant, having vanishing moments and intermediate scales. Several explicit examples are discussed to illustrate the construction and properties of the wavelet frames.
References


1)

I. Daubechies
.
Orthonormal bases of compactly supported wavelets.
Commun. Pure Appl. Math.
,
7 ,
909 
996

2)

Daubechies, I.: `Ten lectures on wavelets', CBMSNSF Regional Conference Series in Applied Mathematics, 61, 1992, SIAM, Philadelphia.

3)

E.P. Simoncelli ,
W.T. Freeman ,
E.H. Adelson ,
D.J. Heeger
.
Shiftable multiscale transform.
IEEE Trans. Inform. Theory
,
2 ,
587 
607

4)

A. Petukhov
.
Explicit constructions of framelets.
Appl. Comput. Harmon. Anal.
,
2 ,
313 
327

5)

C.K. Chui ,
W. He ,
J. Stockler
.
Compactly supported tight and sibling frames with maximum vanishing moments.
Appl. Comput. Harmon. Anal.
,
3 ,
224 
262

6)

I. Daubechies ,
B. Han ,
A. Ron ,
Z.W. Shen
.
Framelets: MRAbased constructions of wavelet frames.
Appl. Comput. Harmon. Anal.
,
1 ,
1 
46

7)

K. Berkner ,
R.O. Wells
.
A new hierarchical scheme for approximating the continuous wavelet transform with applications to edge detection.
IEEE Signal Process. Lett.
,
8 ,
193 
195

8)

M. Shensa
.
The discrete wavelet transform: wedding the À Trous and Mallat algorithms.
IEEE Trans. Signal Process.
,
10 ,
2464 
2482

9)

R.R. Coifman ,
D.L. Donoho ,
A. Antoniadis
.
(1995)
Translationinvariant denoising, Wavelets and Statistics.

10)

J.L. Starck ,
M. Elad ,
D.L. Donoho
.
Redundant multiscale transforms and their application for morphological component analysis.
J. Adv. Imaging Electron Phys.
,
287 
348

11)

I.W. Selesnick ,
A.A. Petrosian ,
F.G. Meyer
.
(2001)
The doubledensity DWT, Wavelets in signal and image analysis from theory to practice.

12)

Kingsbury, N.G.: `The dualtree complex wavelet transform: a new technique for shift invariance and directional filters', Proc. 8th IEEE DSP Workshop, 9–12 August 1998, Salt Lake City, UT.

13)

N. Kingsbury
.
Complex wavelets for shift invariant analysis and filtering of signals.
Appl. Comput. Harmon. Anal.
,
3 ,
234 
253

14)

Fernandes, F.C.A.: `Directional, shiftinsensitive, complex wavelet transforms with controllable redundancy', January 2002, Ph. D., Rice University.

15)

I.W. Selesnick ,
R.G. Baraniuk ,
N.G. Kingsbury
.
The dualtree complex wavelet transform – a coherent framework for multiscale signal and image processing.
IEEE Signal Process. Mag.
,
6 ,
123 
151

16)

I.W. Selesnick
.
The doubledensity dualtree DWT.
IEEE Trans. Signal Process.
,
5 ,
1304 
1314

17)

I.W. Selesnick
.
A higherdensity discrete wavelet transform.
IEEE Trans. Signal Process.
,
8 ,
3039 
3048

18)

I.W. Selesnick
.
The design of approximate Hilbert transform pairs of wavelet bases.
IEEE Trans. Signal Process.
,
1144 
1152

19)

M. Unser
.
Wavelet theory demystified.
IEEE Trans. Signal Process.
,
2 ,
470 
483

20)

H. Ozkaramanli ,
R. Yu
.
On the phase condition and its solution for Hilbert transform pairs of wavelets bases.
IEEE Trans. Signal Process.
,
12 ,
3293 
3294

21)

R. Yu ,
H. Ozkaramanli
.
Hilbert transform pairs of biorthogonal wavelet bases.
IEEE Trans. Signal Process.
,
6 ,
2119 
2125

22)

P.P. Vaidyanathan
.
(1993)
Multirate systems and filterbanks.

23)

J.P. Thiran
.
Recursive digital filters with maximally flat group delays.
IEEE Trans. Circuit Theory
,
659 
664
http://iet.metastore.ingenta.com/content/journals/10.1049/ietspr_20070028
Related content
content/journals/10.1049/ietspr_20070028
pub_keyword,iet_inspecKeyword,pub_concept
6
6