http://iet.metastore.ingenta.com
1887

Signal recovery from partial fractional Fourier domain information and its applications

Signal recovery from partial fractional Fourier domain information and its applications

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The problem of recovering signals from partial fractional Fourier transform information arises in wave propagation problems where the measured information is partial, spread over several observation planes, or not of sufficient spatial resolution or accuracy. This problem can be solved with the method of projections onto convex sets, with the convergence of the iterative algorithm being assured. Several prototypical application scenarios and simulation examples are presented.

References

    1. 1)
      • H.M. Ozaktas , Z. Zalevsky , M.A. Kutay . (2001) The fractional Fourier transform with applications in optics and signal processing.
    2. 2)
      • H.M. Ozaktas , B. Barshan , D. Mendlovic . Convolution, filtering and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms. J. Opt. Soc. Am. A , 547 - 559
    3. 3)
    4. 4)
      • D. Mendlovic , H.M. Ozaktas . Fractional Fourier transforms and their optical implementation: I. J. Opt. Soc. Am. A , 1875 - 1881
    5. 5)
      • H.M. Ozaktas , D. Mendlovic . Fractional Fourier transforms and their optical implementation: II. J. Opt. Soc. Am. A , 2522 - 2531
    6. 6)
    7. 7)
    8. 8)
      • Yetik, İ.Ş., Kutay, M.A., Özaktaş, H.: `Continuous and discrete fractional Fourier domain decomposition', Proc. 2000 IEEE Int. Conf. Acoust, Speech, and Signal Processing, 2000, I, p. 93–96.
    9. 9)
      • M.A. Kutay , H.M. Ozaktas . Optimal image restoration with the fractional Fourier transform. J. Opt. Soc. Am. A , 825 - 833
    10. 10)
      • B. Barshan , B. Ayrulu . Fractional Fourier transform preprocessing for neural networks and its application to object recognition. Neural Netw. , 131 - 140
    11. 11)
    12. 12)
      • İ.Ş. Yetik , H.M. Ozaktas , B. Barshan . Perspective projections in the space-frequency plane and fractional Fourier transforms. J. Opt. Soc. Am. A , 2382 - 2390
    13. 13)
    14. 14)
      • L. Barker , Ç. Candan , T. Hakioğlu . The discrete harmonic oscillator, Harper's equation, and the discrete fractional Fourier transform. J. Phys. A , 2209 - 2222
    15. 15)
      • R. Tao , B. Deng , Y. Wang . Research progress of the fractional Fourier transform in signal processing. Sci. China (Ser. F, Inf. Sci.) , 1 - 25
    16. 16)
      • H.M. Ozaktas , D. Mendlovic . Fractional Fourier optics. J. Opt. Soc. Am. A , 743 - 751
    17. 17)
      • H.M. Ozaktas , D. Mendlovic . Fractional Fourier transform as a tool for analyzing beam propagation and spherical mirror resonators. Opt. Lett. , 1678 - 1680
    18. 18)
    19. 19)
      • Cetin, A.E., Özaktaş, H., Ozaktas, H.M.: `Signal recovery from partial fractional Fourier transform information', Proc. 1st Int. Symp. Control, Communications and Signal Processing (ISCCSP 2004), March 2004, p. 217–220.
    20. 20)
      • D.C. Youla , H. Webb . Image restoration by the method of convex projections, part-1: Theory. IEEE Trans. Med. Imaging , 2 , 81 - 94
    21. 21)
      • H. Stark . (1987) Image recovery – theory and application.
    22. 22)
    23. 23)
      • P.L. Combettes . (1996) The convex feasibility problem in image recovery’, Advances in Imaging and Electron Physics.
    24. 24)
    25. 25)
      • Candan Ç: ‘Discrete fractional Fourier transform matrix generator’ MATLAB program, 1998. Available at http://www.ee.bilkent.edu.tr/_haldun/dFRT.m.
    26. 26)
      • M.I. Sezan , H. Stark . Image restoration by the method of convex projections, part-2: Applications and numerical results. IEEE Trans. Med. Imaging , 2 , 95 - 101
    27. 27)
    28. 28)
      • A.E. Cetin , R. Ansari . A convolution based framework for signal recovery. J. Opt. Soc. Am. A , 1193 - 1200
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
      • S.S. Iyengar , R.R. Brooks . (2004) Distributed sensor networks.
    34. 34)
      • Guest editorial on Swarm robotics. Auton. Robots , 111 - 113
    35. 35)
      • Swarm robotics: state-of the-art survey. Lect. Notes Comput. Sci.
    36. 36)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr_20070017
Loading

Related content

content/journals/10.1049/iet-spr_20070017
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address