access icon free Improved phase curvature autofocus for stripmap synthetic aperture radar imaging

Based on the theory of phase curvature autofocus (PCA) on stripmap synthetic aperture radar (SAR), an improved algorithm for increasing the accuracy of phase error compensation is presented in this study. PCA method was proposed to extend the phase gradient autofocus method for SAR systems in stripmap mode. The main problems concerned with the traditional PCA algorithm are related to selecting candidates in the image for phase error estimation, windowing, estimation procedure, and range shift due to the phase error. In this study, the modification of traditional PCA algorithm has been performed in different steps including the following: improving range-compressed data, prominent points extraction, adaptive windowing, weighted maximum likelihood for phase error estimation, improving phase error result, range shift compensation, and determining the condition to end the iterations. Real data experiments demonstrate the success of the proposed autofocus method, which is applied to the stretched-based pulsed mode SAR data set in the absence of highly accurate inertial navigation units.

Inspec keywords: gradient methods; error compensation; synthetic aperture radar; radar imaging; data compression; image coding; maximum likelihood estimation; feature extraction

Other keywords: PCA method; adaptive windowing; improved phase curvature autofocus; stripmap SAR; weighted maximum likelihood for phase error estimation; prominent points extraction; SAR systems; phase error compensation; stretched-based pulsed mode SAR data set; range shift compensation; phase gradient autofocus method; range-compressed data; stripmap synthetic aperture radar imaging; inertial navigation unit

Subjects: Radar theory; Radar equipment, systems and applications; Image and video coding; Other topics in statistics; Image recognition; Optimisation techniques

References

    1. 1)
      • 26. Kirscht, M.: ‘Detection, velocity estimation and imaging of moving targets with single channel SAR’. Proc. EUSAR, Friedrichshafen Germany, 1998.
    2. 2)
      • 23. Knapp, C.H., Carter, G.C.: ‘The generalised correlation method for estimation of time delay’, IEEE Trans. Acoust. Speech Signal Process., 1976, 24, (4), pp. 320327.
    3. 3)
      • 19. Saeedi, J., Faez, K.: ‘Synthetic aperture radar imaging using nonlinear frequency modulation signal’, IEEE Trans. Aerosp. Electron. Syst., 2016, 52, (1), pp. 99110.
    4. 4)
      • 5. Samczynski, P., Kulpa, K.S: ‘Coherent MapDrift technique’, IEEE Trans. Geosci. Remote Sens., 2010, 48, (3), pp. 15051517.
    5. 5)
      • 21. Doerry, A.W.: ‘Automatic compensation of antenna beam roll-off in SAR images’, SANDIA REPORT, 2006, pp. 119, http://www.sandia.gov/radar/complex_data/sand20062632_antenna_beam_comp.pdf.
    6. 6)
      • 18. Schikorr, M.: ‘High range resolution with digital stretch processing’. IEEE Radar Conf., Rome, 2008, pp. 16.
    7. 7)
      • 1. Saeedi, J.: ‘Feasibility study and conceptual design of missile-borne synthetic aperture radar’, IEEE Trans. Syst., Man, Cybern.: Syst., 2020, 50, (3), pp. 11221133.
    8. 8)
      • 6. Jakowatz, C.V., Wahl, D.E.: ‘Eigenvector method for maximum-likelihood estimation of phase errors in synthetic aperture radar imagery’, Opt. Lett., 1993, 10, (12), pp. 25392546.
    9. 9)
      • 28. Samczyñski, P., Pietrzyk, G., Gorzelanczyk, A.: ‘Performance analysis of non-coherent methods of autofocusing images in strip mode SAR’. Proc. SPIE Photon. Appl. Astronomy, Commun. Ind. High-Energy Phys. Exp. IV, Bellingham, WA, 2006, (6159), pp. 61591M-161591M-7.
    10. 10)
      • 17. Meta, A., Hoogeboom, P., Ligthart, L.P.: ‘Signal processing for FMCW SAR’, IEEE Trans. Geosci. Remote Sens., 2007, 45, (11), pp. 35193532.
    11. 11)
      • 10. Jakowatz, C.V., Wahl, D.E., Eichel, P.H., et al: ‘Spotlight-mode synthetic aperture radar: A signal processing approach’ (Kluwer Academic Publishers, Boston, 1996).
    12. 12)
      • 2. Fornaro, G.: ‘Trajectory deviations in airborne SAR: analysis and compensation’, IEEE Trans. Aerosp. Electron. Syst., 1999, 35, (3), pp. 9971009.
    13. 13)
      • 4. Saeedi, J., Faez, K.: ‘A back-projection autofocus algorithm based on flight trajectory optimization for synthetic aperture radar imaging’, Multidimens. Syst. Signal Process., 2016, 27, (2), pp. 411431.
    14. 14)
      • 3. Saeedi, J., Alavi, S.M.: ‘Improved navigation-based motion compensation for LFMCW synthetic aperture radar imaging’, Signal, Image, Video Process., 2016, 10, (2), pp. 405412.
    15. 15)
      • 9. Eichel, P.H., Jakowatz, C.V.: ‘Phase-gradient algorithm as an optimal estimator of the phase derivative’, Opt. Lett., 1989, 14, (20), pp. 11011103.
    16. 16)
      • 20. Pat, J.B.: ‘Synthetic aperture sonar image reconstruction using a multiple-receiver towfish’. M.Sc. Thesis, Department of Electrical and Electronic Engineering, University of Canterbury, Christchurch, New Zealand, 2000.
    17. 17)
      • 32. Erdogan, H., Fessler, J.A.: ‘Monotonic algorithms for transmission tomography’, IEEE Trans. Med. Imag., 1999, 18, (9), pp. 801814.
    18. 18)
      • 14. Zhang, L., Qiao, Z., Xing, M.D., et al: ‘A robust motion compensation approach for UAV SAR imagery’, IEEE Trans. Geosci. Remote Sens., 2012, 50, (8), pp. 32023218.
    19. 19)
      • 27. Berizzi, F., Dalle Messe, E., Mortorella, M.: ‘Performance analysis of a contrast-based ISAR autofocusing algorithm’. Proc. IEEE Radar Conf., Long Beach CA, April 2002, pp. 200205.
    20. 20)
      • 22. Fortune, S.A.: ‘Phase Error Estimation for Synthetic Aperture Imagery’, Ph.D. Dissertation, Electrical and Electronic Engineering Department, University of Canterbury, Christchurch, New Zealand, 2005.
    21. 21)
      • 11. Wahl, D., Jakowatz, C.V., Thompson, P.A.: ‘New approach to stripmap SAR autofocus’. Sixth IEEE Digital Signal Processing Workshop, Yosemite National Park, CA, USA, 1994, pp. 5356.
    22. 22)
      • 25. Oliver, C., Quegan, S.: ‘Understanding synthetic aperture radar images’ (Artech House, Norwood, MA, 1999).
    23. 23)
      • 8. Eichel, P.H., Ghiglia, D.C., Jakowatz, C.V.: ‘Speckle processing method for synthetic aperture radar phase correction’, Opt. Lett., 1989, 14, (1), pp. 13.
    24. 24)
      • 29. Morrison, R.L., Do, M.N., Munson, D.C.: ‘SAR image autofocus by sharpness optimization: A theoretical study’, IEEE Trans. Image Process., 2007, 16, (9), pp. 23092321.
    25. 25)
      • 7. Wahl, D.E., Eichel, P.H., Ghiglia, D.C., et al: ‘Phase gradient autofocus — A robust tool for high resolution SAR phase correction’, IEEE Trans. Aerosp. Electron. Syst., 1994, 30, (3), pp. 827835.
    26. 26)
      • 31. Kragh, T.J.: ‘Monotonic iterative algorithm for minimum-entropy autofocus’. Proc. 14th Annu. ASAP Workshop, Lexington, MA, USA, 2006, pp. 138.
    27. 27)
      • 13. Leier, S., Kronig, M., Zoubir, A.M.: ‘A modified version of the mosaic phase gradient autofocus’. 21st European Signal Processing Conf. (EUSIPCO 2013), Marrakech, 2013, pp. 15.
    28. 28)
      • 30. Blanchet, G., Moisan, L.: ‘An explicit sharpness Index related to global phase coherence’. In Proc. of the IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Kyoto, Japan, 2012, pp. 10651068.
    29. 29)
      • 16. Ye, W., Yeo, T.S., Bao, Z.H.: ‘Weighted least-squares estimation of phase errors for SAR/ISAR autofocus’, IEEE Trans. Geosci. Remote Sens., 1999, 37, (5), pp. 24872494.
    30. 30)
      • 12. De Macedo, K.A.C., Scheiber, R., Moreira, A.: ‘An autofocus approach for residual motion errors with application to airborne repeat-pass SAR interferometry’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (10), pp. 31513162.
    31. 31)
      • 15. Callow, H.J., Hayes, M.P., Gough, P.T.: ‘Stripmap phase gradient autofocus’. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492), San Diego, CA, USA, 2003, Vol. 5, pp. 24142421.
    32. 32)
      • 24. Wang, Y., Zhu, X.: ‘Robust estimators for multipass SAR interferometry’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (2), pp. 968980.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2020.0334
Loading

Related content

content/journals/10.1049/iet-spr.2020.0334
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading