access icon free Automated system for weak periodic signal detection based on Duffing oscillator

The periodic signals that have predictable and deterministic characteristics are used in the analysis and modelling of dynamical systems in diverse fields. These signals can be detected as the weak signals within the time series obtained from the measurable processes of dynamical systems. The Duffing oscillator is effective in detecting weak periodic signals with a very low signal-to-noise ratio. In this study, the authors present a method to automate the weak periodic signal detection of the Duffing oscillator using a quantitative index for the classification of the periodic and non-periodic signals. In this method, the authors use the wavelet scale index as the quantitative index in the classification of signals. Thus, they are able to plot the wavelet scale index spectrum of the Duffing oscillator where the frequency values of the weak periodic signals correspond to near-zero wavelet scale index parameters. First, the authors perform simulations using the method and detect weak periodic signals embedded in noise. Then, they employ two electroencephalogram signals to demonstrate the feasibility of the proposed method in the empirical data. Lastly, they compare the method to the periodogram power spectral density estimate based on fast Fourier transform.

Inspec keywords: signal classification; spectral analysis; medical signal detection; electroencephalography; fast Fourier transforms; medical signal processing; oscillators; wavelet transforms

Other keywords: nonperiodic signal classification; electroencephalogram signals; near-zero wavelet scale index parameters; Duffing oscillator; wavelet scale index spectrum; quantitative index; weak periodic signal detection; periodogram power spectral density; fast Fourier transform; periodic signal classification

Subjects: Bioelectric signals; Digital signal processing; Biology and medical computing; Signal detection; Electrical activity in neurophysiological processes; Electrodiagnostics and other electrical measurement techniques

References

    1. 1)
      • 14. Luo, W.M., Zhang, Y.R.: ‘Non-periodic pulse signal detection based on variable scale coupled Duffing oscillators’, Electron. Lett., 2018, 54, (5), pp. 280281.
    2. 2)
      • 27. Kovacic, I., Brennan, M.J.: ‘The duf_ng equation: nonlinear oscillators and their behaviour’ (Wiley, Chichester, UK, 2011).
    3. 3)
      • 48. Dohnal, G.: ‘Weak signal detection in SPC’, Appl. Stoch. Models. Bus. Ind., 2020, 36, (2), pp. 225236.
    4. 4)
      • 43. Zhu, Q., Lin, F., Li, H., et al: ‘Human-autonomous devices for weak signal detection method based on multimedia chaos theory’, J Ambient Intell. Human Comput., 2020, https://doi.org/10.1007/s12652-020-02270-x.
    5. 5)
      • 32. Zeni, A.R., Gallas, J.A.C.: ‘Lyapunov exponents for a Duffing oscillator’, Physica D, 1995, 89, pp. 7182.
    6. 6)
      • 47. Zheng, X., Chen, W., You, Y., et al: ‘Ensemble deep learning for automated visual classification using EEG signals’, Pattern Recognit., 2020, 102, p. 107147.
    7. 7)
      • 40. Alfonsi, L., Gammaitoni, L., Santucci, S., et al: ‘Intrawell stochastic resonance versus interwell stochastic resonance in underdamped bistable systems’, Phys. Rev. E, 2000, 62, pp. 299302.
    8. 8)
      • 28. Peng, H.-H., Xu, X., Yang, B.-C., et al: ‘Implication of two-coupled differential Van der Pol duffing oscillator in weak signal detection’, J. Phys. Soc. Jpn., 2016, 85, (4), p. 8.
    9. 9)
      • 16. Han, X., Bi, Q.: ‘Bursting oscillations in Duffing's equation with slowly changing external forcing’, Commun. Nonlinear Sci. Numer. Simul., 2011, 16, pp. 41464152.
    10. 10)
      • 22. Bolós, V.J., Benitez, R., Ferrerc, R., et al: ‘The windowed scalogram difference: a novel wavelet tool for comparing time series’, Appl. Math. Comput., 2017, 312, pp. 4965.
    11. 11)
      • 49. Masoliver, M., Masoller, C.: ‘Neuronal coupling benefits the encoding of weak periodic signals in symbolic spike patterns’, Commun. Nonlinear Sci. Numer. Simulat., 2020, 82, p. 105023.
    12. 12)
      • 31. Balcerzak, M., Pikunov, D., Dabrowski, A.: ‘The fastest, simplified method of Lyapunov exponents spectrum estimation for continuous-time dynamical systems’, Nonlinear Dyn., 2018, 94, pp. 30533065.
    13. 13)
      • 2. Jung, S.N., Longtin, A., Maler, L.: ‘Weak signal amplification and detection by higher-order sensory neurons’, J. Neurophysiol., 2016, 115, (4), pp. 21582175.
    14. 14)
      • 39. Duan, F.B., Chapeau-Blondeau, F., Abbott, D.: ‘Weak signal detection: condition for noise induced enhancement’, Digit. Signal Process., 2013, 23, pp. 15851591.
    15. 15)
      • 41. Wang, Y., Xu, G., Zhang, S., et al: ‘EEG signal co-channel interference suppression based on image dimensionality reduction and permutation entropy’, Signal Process., 2017, 134, pp. 113122.
    16. 16)
      • 6. Sun, M., Li, Z., Li, Z., et al: ‘A noise attenuation method for weak seismic signals based on compressed sensing and CEEMD’, IEEE Access, 2020, 8, pp. 7195171964.
    17. 17)
      • 37. Zhang, X., Yan, J., Duan, F.: ‘Comparison of bistable systems and matched filters in non Gaussian noise’, Fluctuation Noise Lett., 2016, 15, (1), p. 1650003.
    18. 18)
      • 5. Li, Y., Yang, B.J., Badal, J., et al: ‘Chaotic system detection of weak seismic signals’, Geophys. J. Int., 2009, 178, (3), pp. 14931522.
    19. 19)
      • 18. Han, X., Zhang, Y., Bi, Q., et al: ‘Two novel bursting patterns in the Duffing system with multiple- frequency slow parametric excitations’, Chaos, 2018, 28, p. 043111.
    20. 20)
      • 20. Wang, K., Yan, X., Yang, Q., et al: ‘Weak signal detection based on strongly coupled Duffing-Van der Pol oscillator and long short-term memory’, J. Phys. Soc. Jpn., 2020, 89, p. 014003.
    21. 21)
      • 29. Griffiths, D.F., Higham, D.J.: ‘Numerical methods for ordinary differential equations’ (Springer-Verlag, London, 2010).
    22. 22)
      • 9. Luo, J., Xu, X., Ding, Y., et al: ‘Application of a memristor-based oscillator to weak signal detection’, Eur. Phys. J. Plus, 2018, 133, p. 239.
    23. 23)
      • 35. Duan, F., Chapeau-Blondeau, F., Abbott, D.: ‘Noise-enhanced SNR gain in parallel array of bistable oscillators’, Electron. Lett., 2006, 42, (17), pp. 10081009.
    24. 24)
      • 15. Akilli, M.: ‘Detecting weak periodic signals in EEG time series’, Chin. J. Phys., 2016, 54, pp. 7785.
    25. 25)
      • 45. Yu, M., Zhang, G., Li, Q., et al: ‘PGMM—pre-trained Gaussian mixture model based convolution neural network for electroencephalography imagery analysis’, IEEE Access, 2020, 8, pp. 157418157426.
    26. 26)
      • 50. Kalra, M., Kumar, S., Das, B.: ‘Moving ground target detection with seismic signal using smooth Pseudo wigner–ville distribution’, IEEE Trans. Instrum. Meas., 2020, 69, (6), pp. 38963906.
    27. 27)
      • 11. Wang, G., Chen, D., Lin, J., et al: ‘The application of chaotic oscillators to weak signal detection’, IEEE Trans. Ind. Electron., 1999, 46, pp. 440444.
    28. 28)
      • 10. Kumar, S., Jha, R.K.: ‘Weak signal detection using stochastic resonance with approximated fractional integrator’, Circuits Syst. Signal Process., 2019, 38, pp. 11571178.
    29. 29)
      • 46. Vink, J.J.T., Klooster, D.C.W., Ozdemir, R.A., et al: ‘EEG functional connectivity is a weak predictor of causal brain interactions’, Brain Topogr., 2020, 33, pp. 221223.
    30. 30)
      • 19. Niu, J., Liu, R., Shen, Y., et al: ‘Chaos detection of Duffing system with fractional-order derivative by Melnikov method’, Chaos, 2019, 29, p. 123106.
    31. 31)
      • 24. Akilli, M., Yilmaz, N., Akdeniz, K.G.: ‘Study of the q-Gaussian distribution with the scale Index and calculating entropy by normalized inner scalogram’, Phys. Lett. A, 2019, 383, (11), pp. 10991104.
    32. 32)
      • 7. Li, G., Tan, N., Li, X.: ‘Weak signal detection method based on the coupled Lorenz system and its application in rolling bearing fault diagnosis’, Appl. Sci., 2020, 10, p. 4086.
    33. 33)
      • 3. Fan, H., Wang, Y., Wang, H., et al: ‘Autapses promote synchronization in neuronal networks’, Sci. Rep., 2018, 8, p. 580.
    34. 34)
      • 26. Yilmaz, N., Akilli, M., Özbek, M., et al: ‘Application of the nonlinear methods in pneumocardiogram signals’, J. Biol. Phys., 2020, 46, pp. 209222.
    35. 35)
      • 1. Yu, Y., Liu, F., Wang, W.: ‘Frequency sensitivity in Hodgkin–Huxley systems’, Biol. Cybern., 2001, 84, (3), pp. 227235.
    36. 36)
      • 23. Akilli, M., Yilmaz, N.: ‘Study of weak periodic signals in the EEG signals and their relationship with postsynaptic potentials’, IEEE Trans. Neural Syst. Rehabil. Eng., 2018, 26, (10), pp. 19181925.
    37. 37)
      • 25. Yilmaz, N., Canbaz, B., Akilli, M., et al: ‘Study of the stability of the fermionic instanton solutions by the scale index method’, Phys. Lett. A, 2018, 382, (32), pp. 21182121.
    38. 38)
      • 44. Zhang, L., Ji, Y., Luo, M.: ‘Parameter estimation of weak signal based on the steady attractor of duffing oscillator’, Chin. J. Electron., 2019, 28, (4), pp. 781788.
    39. 39)
      • 12. Wang, G.Y., He, S.L.: ‘A quantitative study on detection and estimation of weak signals by using chaotic duffing oscillators’, IEEE Trans. Circuits-I, 2003, pp. 945953.
    40. 40)
      • 17. Han, X., Yub, Y., Zhangc, C., et al: ‘Turnover of hysteresis determines novel bursting in Duffing system with multiple-frequency external forcings’, Int. J. Non-Linear Mech., 2017, 89, pp. 6974.
    41. 41)
      • 42. Wang, G., Zhu, J., Xu, Z.: ‘Asymptotically optimal one-bit quantizer design for weak-signal detection in generalized Gaussian noise and lossy binary communication channel’, Signal Process., 2019, 154, pp. 207216.
    42. 42)
      • 13. Zeng, L., Zhang, L.: ‘State identification of duffing oscillator based on extreme learning machine’, IEEE Signal Process. Lett., 2018, 25, (1), pp. 2529.
    43. 43)
      • 33. Liu, F., Wang, J.F., Wang, W.: ‘Frequency sensitivity in weak signal detection’, Phys. Rev. E, 1999, 59, p. 3453.
    44. 44)
      • 21. Benitez, R., Bolos, V.J., Ramirez, M.E.: ‘A wavelet based tool for studying non-periodicity’, Comput. Math. Appl., 2010, 60, pp. 634641.
    45. 45)
      • 36. Duan, F., Chapeau-Blondeau, F., Abbott, D.: ‘Non-Gaussian noise benefits for coherent detection of narrowband weak signal’, Phys. Lett. A, 2014, 378, (26–27), pp. 18201824.
    46. 46)
      • 30. Mallat, S.: ‘A wavelet tour of signal processing’ (Academic Press, London, 1999).
    47. 47)
      • 8. Wang, Q.B., Yang, Y., Zhang, X.: ‘Detection of weak signal based on parameter identification of delay differential system with noise disturbance’, Math. Probl. Eng., 2020, Article ID 2047952, p. 9, https://doi.org/10.1155/2020/2047952.
    48. 48)
      • 34. Wanga, G., Zhenga, W., He, S.: ‘Estimation of amplitude and phase of a weak signal by using the property of sensitive dependence on initial conditions of a nonlinear oscillator’, Signal Process., 2002, 82, (1), pp. 103115.
    49. 49)
      • 4. Yue, L., Bao-Jun, Y., Xue-Ping, Z., et al: ‘Algorithm of chaotic vibrator to detect weak events in seismic prospecting records’, Chin. J. Geophys., 2005, 48, (6), pp. 14281433.
    50. 50)
      • 38. Lai, Z.-H., Leng, Y.-G.: ‘Generalized parameter-adjusted stochastic resonance of Duffing oscillator and its application to weak-signal detection’, Sensors, 2015, 15, (9), pp. 2132721349.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2020.0203
Loading

Related content

content/journals/10.1049/iet-spr.2020.0203
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading