Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Iterative learning approach to active noise control of highly autocorrelated signals with applications to machinery noise

This study describes an iterative learning approach to the active control of machinery noise with high autocorrelation properties. In contrast to typical active noise control solutions, which work by adapting the transfer function of the controller, in the iterative learning control one adapts the control signal itself. Special care was taken to develop a generic solution that can handle different sorts of secondary path models including very long and non-minimum phase finite impulse response filters. To achieve that, the authors used spectral factorisation and exploit the fact that, for non-minimum phase systems, a stable inverse can be constructed if the causality constraint is relaxed and later restored by taking advantage of the periodicity of the attenuated signal. The resulting controller can be efficiently implemented on a sample-to-sample calculation basis. The behaviour and the performance of the proposed scheme are studied using computer simulations and real-world experiments on noises from an electric transformer and functional magnetic resonance imaging device. The proposed solution was also compared to normalised feedforward filtered-X least mean squares algorithm and performed much better in terms of attenuation, convergence, and robustness.

References

    1. 1)
      • 15. Widrow, B., Stearns, S.: ‘Adaptive signal processing’ (Prentice Hall, Englewood Cliffs, 1985).
    2. 2)
      • 26. Pinte, G., Desmet, W., Sas, P.: ‘Active control of repetitive transient noise’, J. Sound Vib., 2007, 307, pp. 513526.
    3. 3)
      • 18. Bodson, M.: ‘Rejection of periodic disturbances of unknown and time-varying frequency’, Int. J. Adapt. Control Signal Process., 2005, 19, pp. 6788.
    4. 4)
      • 16. Airimiţoaie, T., Silva, A., Landau, I.: ‘Indirect adaptive regulation strategy for the attenuation of time varying narrow-band disturbances applied to a benchmark problem’, Eur. J. Control, 2013, 19, (4), pp. 313325.
    5. 5)
      • 8. Kannan, G., Milani, A., Panahi, I., et al: ‘An efficient feedback active noise control algorithm based on reduced-order linear predictive modeling of fMRI acoustic noise’, IEEE Trans. Biomed. Eng., 2011, 58, pp. 33033309.
    6. 6)
      • 4. Castae-Selga, R., Pea, R.: ‘Active noise hybrid time-varying control for motorcycle helmets’, IEEE Trans. Control Syst. Technol., 2010, 18, pp. 602612.
    7. 7)
      • 30. Zhou, Y., Yin, Y., Zhang, Q.: ‘Active control of repetitive impulsive noise in a non-minimum phase system using an optimal iterative learning control algorithm’, J. Sound Vib., 2013, 332, (18), pp. 40894102. https://doi.org/10.1016/j.jsv.2013.03.004. ISSN 0022-460X.
    8. 8)
      • 28. Pinte, G., Stallaert, B., Sas, P., et al: ‘A novel design strategy for iterative learning and repetitive controllers of systems with a high modal density: theoretical background’, Mech. Syst. Signal Process., 2010, 24, (2), pp. 432443. ISSN 0888-3270. https://doi.org/10.1016/j.ymssp.2009.07.006.
    9. 9)
      • 39. Hansen, C.: ‘Understanding active noise cancellation’ (Taylor & Francis, USA, 2002). ISBN 9780203467336.
    10. 10)
      • 40. Sujbert, L.: ‘A new filtered LMS algorithm for active noise control’. Proc. Active ‘99 – The Int. EAA Symp. Active Control of Sound and Vibration, Fort Lauderdale, Florida, USA, 1999, pp. 11011110.
    11. 11)
      • 7. Chambers, J., Bullock, D., Kahana, Y., et al: ‘Developments in active noise control sound systems for magnetic resonance imaging’, Appl. Acoust., 2007, 68, pp. 281295.
    12. 12)
      • 12. Lee, S.-H., Chung, C., Lee, C.: ‘Active high-frequency vibration rejection in hard disk drives’, IEEE/ASME Trans. Mechatronics, 2006, 11, (3), pp. 339345.
    13. 13)
      • 13. Pearson, J., Goodall, R., Lyndon, I.: ‘Active control of helicopter vibration’, Comput. Control Eng. J., 1994, 5, pp. 277284.
    14. 14)
      • 36. Ravicz, M.E., Melcher, J.R., Kiang, N.Y.-S.: ‘Acoustic noise during functional magnetic resonance imaging’, J. Acoust. Soc. Am., 2000, 108, (4), pp. 16831696.
    15. 15)
      • 10. Aggogeri, F., Al-Bender, F., Brunner, B., et al: ‘Design of piezo-based AVC system for machine tool applications’, Mech. Syst. Signal Process. ., 2013, 36, (1), pp. 5365. https://doi.org/10.1016/j.ymssp.2011.06.012. ISSN 0888-3270. Piezoelectric Technology.
    16. 16)
      • 35. Moir, T.J.: ‘A control theoretical approach to the polynomial spectral-factorization problem’, Circuits Syst. Signal Process., 2011, 30, (5), pp. 987998.
    17. 17)
      • 23. Pigg, S., Bodson, M.: ‘Adaptive algorithms for the rejection of sinusoidal disturbances acting on unknown plants’, IEEE Trans. Control Syst. Technol., 2010, 18, (4), pp. 822836.
    18. 18)
      • 24. Niedźwiecki, M., Meller, M., Łukwiński, Y.K.D.: ‘Estimation of nonstationary harmonic signals and its application to active control of MRI noise’. Proc. 2013 IEEE Int. Conf. Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013, pp. 56615665.
    19. 19)
      • 14. Morgan, D.: ‘An analysis of multiple correlation cancellation loops with a filter in the auxiliary path’, IEEE Trans. Acoust. Speech Signal Process., 1980, 28, pp. 454467.
    20. 20)
      • 37. Panahi, I.M.S.: ‘Development of ANC methods for fMRI rooms; design challenges and algorithms’. 2013 8th Int. Symp. Image and Signal Processing and Analysis (ISPA), Trieste, Italy, 2013, pp. 655660.
    21. 21)
    22. 22)
      • 9. Liu, L., Du, L., Kolla, A.: ‘Wireless communication integrated hybrid active noise control system for infant incubators’. Proc. 2016 IEEE Signal Processing in Medicine and Biology Symp., Philadelphia, USA, 2016, pp. 16.
    23. 23)
      • 17. Landau, L., Constantinescu, A., Rey, D.: ‘Adaptive narrow band disturbance rejection applied to an active suspension – an internal model principle approach’, Automatica, 2005, 41, pp. 563574.
    24. 24)
      • 3. Kajikawa, Y., Gan, W., Kuo, S.: ‘Recent advances on active noise control: open issues and innovative applications’, APSIPA Trans. Signal Inf. Process., 2012, 1, pp. 121.
    25. 25)
      • 5. Gan, W., Mitra, S., Kuo, S.: ‘Adaptive feedback active noise control headset: implementation, evaluation and its extensions’, IEEE Trans. Consum. Electron., 2005, 51, pp. 975982.
    26. 26)
      • 38. Kay, S.M.: ‘Modern spectral estimation: theory and applications’ (Prentice Hall, Englewood Cliffs, 1999).
    27. 27)
      • 1. Nelson, P.A., Elliott, S.J.: ‘Active control of sound’ (Academic Press, USA, 1993).
    28. 28)
      • 22. Niedźwiecki, M., Meller, M.: ‘A new approach to active noise and vibration control – part II: the known frequency case’, IEEE Trans. Signal Process., 2009, 57, (9), pp. 33873398.
    29. 29)
      • 27. Stallaert, B., Pinte, G., Sas, P., et al: ‘A novel design strategy for iterative learning and repetitive controllers of systems with a high modal density: application to active noise control’, Mech. Syst. Signal Process., 2010, 24, pp. 444454.
    30. 30)
      • 25. Pinte, G., Desmet, W., Sas, P.: ‘Active control of impact noise in a duct’. Proc. Tenth Int. Congress on Sound and Vibration, Sweden, 2003, pp. 37273734.
    31. 31)
      • 19. Bodson, M., Douglas, S.: ‘Adaptive algorithms for the rejection of sinusoidal disturbances with unknown frequency’, Automatica, 1997, 33, pp. 22132221.
    32. 32)
      • 29. Yali, Z., Yixin, Y., Qizhi, Z.: ‘Inverse model-based iterative learning control for active control of repetitive impulsive noise with a non-minimum phase secondary path’. Proc. 31st Chinese Control Conf., Hefei, China, 2012, pp. 29172921.
    33. 33)
      • 31. Markusson, O., Hjalmarsson, H., Norrlöf, M.: ‘A general framework for iterative learning control’. Proc. 15th IFAC World Congress, 2002, pp. 16971702.
    34. 34)
      • 2. Kuo, S.M., Morgan, D.: ‘Active noise control systems: algorithms and DSP implementations’ (Wiley, New York, 1995).
    35. 35)
      • 21. Niedźwiecki, M., Meller, M.: ‘A new approach to active noise and vibration control – part I: the known frequency case’, IEEE Trans. Signal Process., 2009, 57, (9), pp. 33733386.
    36. 36)
      • 34. Moir, T.: ‘Inverting non-minimum phase FIR transfer functions with application to reverberant speech’, Int. J. Speech Technol., 2014, 17, (3), pp. 245252.
    37. 37)
      • 41. Chen, K., Chen, C.W.: ‘A plain implementation in frequency domain for wideband active noise control systems’, J. South. Taiwan Univ., 2012, 37, (1), pp. 112.
    38. 38)
      • 6. Kuo, S., Chen, Y.-R., Chang, C.-Y., et al: ‘Development and evaluation of lightweight active noise cancellation earphones’, Appl. Sci., 2018, 8, p. 1178.
    39. 39)
      • 11. Chang, C., Liu, T.: ‘Lqg controller for active vibration absorber in optical disk drive’, IEEE Trans. Magn., 2007, 43, (2), pp. 799801.
    40. 40)
      • 33. Skogestad, S., Postlethwaite, I.: ‘Multivariable feedback control: analysis and design’ (Wiley, USA, 2005, 2nd edn.).
    41. 41)
      • 32. Bristow, D.A., Tharayil, M., Alleyne, A.G.: ‘A survey of iterative learning control’, IEEE Control Syst. Mag., 2006, 26, (3), pp. 96114.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2020.0064
Loading

Related content

content/journals/10.1049/iet-spr.2020.0064
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address