Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Prediction of traumatic pathology by classifying thorax trauma using a hybrid method for emergency services

In recent years, data mining and algorithm-based methods have been used frequently for the prediction and diagnosis of various diseases. Traumas, being one of the significant health problems in the world, are also one of the most important causes of death. This study aims to predict the presence of traumatic pathology in the lung of the patients admitted to the emergency department due to blunt thorax trauma with no X-ray and computed tomography (CT) history by machine learning methods. The models developed in the study using the 5-fold cross-validation method are most accurately classified by the ensemble (voting) classifier, whether there is a pathology in X-ray (mean accuracy = 0.82) and CT (mean accuracy = 0.83). The K-nearest neighbourhood method classifies patients with pathology in X-ray by 83% accuracy, while the ensemble (voting) method classifies non-pathology patients by 94% accuracy in models. Of CT results, random forest, ensemble (voting), and ensemble (stacking) classifiers are precisely classified by 96%, while those patients with pathology are classified perspicuously by 77%. As a result, a mathematical framework using data mining methods was proposed based on estimating the X-ray and CT results for the thorax graph scan.

References

    1. 1)
      • 20. Carvalho, J.B.D., Amaral, G.J.A.D.: ‘Classification methods for planar shapes’, Expert Syst. Appl., 2020, 151, p. 113320.
    2. 2)
      • 35. Bulut, F.: ‘A new clinical decision support system with instance based ensemble classifiers’, J. of the Fac. of Eng. Archit. Gazi Univ., 2017, 32, (1), pp. 6576.
    3. 3)
      • 43. Fawcett, T.: ‘An introduction to ROC analysis’, Pattern Recognit. Lett., 2006, 27, (8), pp. 861874.
    4. 4)
      • 36. Sitawarin, C., Wagner, D.: ‘On the robustness of deep k-nearest neighbors’. 2nd Deep Learning and Security Workshop, San Francisco, CA, 2019.
    5. 5)
      • 2. Osime, O.C., Ighedosa, S.U., Oludiran, O.O., et al: ‘Patterns of trauma deaths in an accident and emergency unit’, Prehosp. Disaster. Med., 2007, 22, (1), pp. 7578.
    6. 6)
      • 47. Pan, B., Shi, Z., Xu, X.: ‘Hierarchical guidance filtering-based ensemble classification for hyperspectral images’, IEEE Trans. Geosci. Remote Sens., 2017, 55, (7), pp. 41774189.
    7. 7)
      • 12. Schreyer, C., Schwab, R.: ‘Management of thoracic trauma and intrathoracic injuries’, Chirurg, 2020, 91, (6), pp. 517530.
    8. 8)
      • 34. Rezaee, M.J., Jozmaleki, M., Valipour, M.: ‘Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange’, Physica A, 2018, 489, pp. 7893.
    9. 9)
      • 33. Adelani, D.I., Traoré, M.K.: ‘Enhancing the reusability and interoperability of artificial neural networks with DEVS modeling and simulation’, Int. J. Model., Simul. Sci. Comput., 2016, 7, (2), p. 1650005.
    10. 10)
    11. 11)
    12. 12)
      • 5. Mata-Mbemba, D., Mugikura, S., Nakagawa, A., et al: ‘Canadian CT head rule and new orleans criteria in mild traumatic brain injury: comparison at a tertiary referral hospital in Japan’, Springerplus., 2016, 5, (1), pp. 5176.
    13. 13)
      • 41. Altman, D.G., Bland, J.M.: ‘Diagnostic tests. 1: sensitivity and specificity’, Br. Med. J., 1994, 308, (6943), p. 1552.
    14. 14)
    15. 15)
      • 21. Tsai, C.-F., Chen, M.-L.: ‘Credit rating by hybrid machine learning techniques’, Appl. Soft Comput., 2010, 10, (2), pp. 374380.
    16. 16)
      • 30. Chen, T., Guestrin, C.: ‘XGBoost: A scalable tree boosting system’. Proc. 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, San Francisco California USA, August 2016.
    17. 17)
      • 7. Nishijima, D.K., Simel, D.L., Wisner, D.H., et al: ‘Does this adult patient have a blunt intra-abdominal injury?’, J. Am. Med. Assoc., 2012, 307, (14), pp. 15171527.
    18. 18)
      • 24. Onan, A., Korukoglu, S., Bulut, H.: ‘A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification’, Expert Syst. Appl., 2016, 62, pp. 116.
    19. 19)
      • 11. Sziklavari, Z., Molnar, T.F.: ‘Blast injures to the thorax’, J. Thorac. Dis., 2019, 11, (Suppl 2), pp. S167S171.
    20. 20)
      • 13. Chakraborty, M., Biswas, S.K., Purkayastha, B.: ‘A novel ensembling method to boost performance of neural networks’, J. Exp. Theor. Artif. Intell., 2020, 32, (1), pp. 1729.
    21. 21)
      • 27. Moreno-Seco, F., Iñesta, J. M., León, P.J.P.D, et al: ‘Comparison of classifier fusion methods for classification in pattern recognition tasks’, in Yeung, D.Y., Kwok, J.T., Fred, A. (Eds): ‘Structural, syntactic, and statistical pattern recognition’ (Springer, Berlin, Heidelberg, 2006), pp. 705713.
    22. 22)
      • 17. Khalifa, S., Martin, P., Young, R.: ‘Label-aware distributed ensemble learning: a simplified distributed classifier training model for big data’, Big Data Res., 2019, 15, pp. 111.
    23. 23)
      • 28. Džeroski, S., Ženko, B.: ‘Is combining classifiers with stacking better than selecting the best one?.’, Mach. Learn., 2004, 54, pp. 255273.
    24. 24)
      • 15. Wang, Y., Wang, D., Geng, N., et al: ‘Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection’, Appl. Soft Comput., 2019, 77, pp. 188204.
    25. 25)
      • 37. Karaci, A., Yaprak, H., Ozkaraca, O., et al: ‘Estimating the properties of ground-waste-brick mortars using DNN and ANN’, Comput. Model. Eng. Sci., 2019, 118, (1), pp. 207228.
    26. 26)
      • 23. Sagi, O., Rokach, L.: ‘Ensemble learning: a survey’, WIRES Data Mining Knowl. Discov., 2018, 8, p. e1249.
    27. 27)
      • 32. Han, J., Kamber, M., Pei, J.: ‘Data mining concepts and techniques’ (Elsevier Inc., Waltham, USA, 2012).
    28. 28)
      • 29. Chen, Y., Wong, M.-L., Li, H.: ‘Applying ant colony optimization to configuring stacking ensembles for data mining’, Expert Syst. Appl., 2014, 41, (6), pp. 26882702.
    29. 29)
      • 39. Zheng, H., Yuan, J., Chen, L.: ‘Short-term load forecasting using EMD-LSTM neural networks with a Xgboost algorithm for feature importance evaluation’, Energies, 2017, 10, (8), p. 1168.
    30. 30)
      • 19. Kuncheva, L.I.: ‘Combining pattern classifiers methods and algorithms’ (John Wiley & Sons Inc., Hoboken, New Jersey, USA, 2004).
    31. 31)
      • 31. Dong, H., Xu, X., Wang, L., et al: ‘Gaofen-3 PolSAR image classification via XGBoost and polarimetric spatial information’, Sensors (Basel), 2018, 18, (2), p. 611.
    32. 32)
      • 8. Artigas Martín, J.M., Martí de Gracia, M., Claraco Vega, L.M., et al: ‘Radiology and imaging techniques in severe trauma’, Med. Intensiva., 2015, 39, (1), pp. 4959.
    33. 33)
      • 9. Rodriguez, R.M., Hendey, G.W., Mower, W.R.: ‘Selective chest imaging for blunt trauma patients: the national emergency X-ray utilization studies (NEXUS-chest algorithm)’, Am. J. Emerg. Med., 2016, 35, (1), pp. 164170.
    34. 34)
      • 16. Nilashi, M., Ahmadi, H., Shahmoradi, L., et al: ‘A predictive method for hepatitis disease diagnosis using ensembles of neuro-fuzzy technique’, J. Infect. Public Health, 2019, 12, (1), pp. 1320.
    35. 35)
      • 14. Nilashi, M., Ibrahim, O., Samad, S., et al: ‘An analytical method for measuring the parkinson's disease progression: a case on a Parkinson's telemonitoring dataset’, Measurement, 2019, 136, pp. 545557.
    36. 36)
      • 48. Albornoz, E.M., Milone, D.H.: ‘Emotion recognition in never-seen languages using a novel ensemble method with emotion profiles’, IEEE Trans. Affective Comput., 2017, 8, (1), pp. 4353.
    37. 37)
      • 42. Parikh, R., Mathai, A., Parikh, S., et al: ‘Understanding and using sensitivity, specificity and predictive values’, Indian J. Ophthalmol., 2008, 56, (1), pp. 4550.
    38. 38)
      • 1. Ekeke, O.N., Okonta, K.E.: ‘Trauma: a major cause of death among surgical inpatients of a Nigerian tertiary hospital’, Pan. Afr. Med. J., 2017, 28, (6), pp. 17.
    39. 39)
      • 3. Shekhar, C., Gupta, L.N., Premsagar, I.C., et al: ‘An epidemiological study of traumatic brain injury cases in a trauma centre of New Delhi (India)’, J. Emerg. Trauma Shock, 2015, 8, (3), pp. 131139.
    40. 40)
      • 25. Qi, C., Tang, X.: ‘A hybrid ensemble method for improved prediction of slope stability’, Int. J. Numer. Anal. Methods Geomech., 2018, 42, pp. 18231839.
    41. 41)
      • 38. Ding, B., Qian, H., Zhou, J.: ‘Activation functions and their characteristics in deep neural networks’. 30th Chinese Control and Decision Conf. (2018 CCDC), Shenyang, China, 2018.
    42. 42)
      • 45. Tintinalli, J.E., Ma, O.J., Yealy, D.M., et al: ‘Tintinalli's emergency medicine: a comprehensive study guide’ (The McGraw-Hill, New York, USA, 2016), pp. 16951707.
    43. 43)
      • 22. Géron, A.: ‘Hands-on machine learning with Scikit-learn and TensorFlow: concepts, tools, and techniques to build intelligent systems’ (O'Reilly Media, Inc., Sebastopol, CA, USA, 2019).
    44. 44)
      • 18. Rodriguez, R.M., Langdorf, M.I., Nishijima, D., et al: ‘Derivation and validation of two decision instruments for selective chest ct in blunt trauma: a multicenter prospective observational study (nexus chest ct)’, PloS Med., 2015, 12, (10), p. e1001883.
    45. 45)
      • 6. Rodriguez, R.M., Anglin, D., Langdorf, M.I., et al: ‘NEXUS chest: validation of a decision instrument for selective chest imaging in blunt trauma’, JAMA Surg., 2013, 148, (10), pp. 940946.
    46. 46)
      • 46. Mohandes, M., Deriche, M., Aliyu, S.O.: ‘Classifiers combination techniques: a comprehensive review’, IEEE Access, 2018, 6, pp. 1962619639.
    47. 47)
      • 26. Polikar, R.: ‘Ensemble learning’, in Zhang, C., Ma, Y. (Eds.): ‘Ensemble machine learning methods and applications’ (Springer, New York, USA, 2012), pp. 134.
    48. 48)
      • 40. Putatunda, S.: ‘Care2vec: a hybrid autoencoder-based approach for the classification of self-care problems in physically disabled children’, Neural Comput. Appl., 2020, 32, pp. 1766917680, https://doi.org/10.1007/s00521-020-04943-2.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2020.0014
Loading

Related content

content/journals/10.1049/iet-spr.2020.0014
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address