access icon free Analysing outage probability of linear and non-linear RF energy harvesting of cooperative communication networks

In this study, a dual-hop cooperative communication system with radio frequency (RF) energy harvesting was investigated in two cases of linear and non-linear energy harvesting models. In the proposed system, the signal is transmitted directly from a source node to a destination node or sent with support of selected relay nodes. While both the source node and the destination node are powered normally, the relay nodes are powered by harvesting technique. To choose the best relay node, a selection combination method was applied at the destination node in both cases of amplify-and-forward and decode-and-forward protocols. To evaluate the system performance, the outage probability of the cooperative communications over independent identically distributed Nakagami-m was derived and analysed with arbitrary m parameter whereas this parameter was fixed to be integral value in previous research studies. Furthermore, the approximate and asymptotic operations are applied to simplify the outage probability expressions. The simulation program was developed based on the Monte Carlo method and MATLAB software with two aims of evaluating the system performance and verifying the theoretical results. The simulation results demonstrate that the analysis and evaluation of the study are considerably accurate.

Inspec keywords: amplify and forward communication; relay networks (telecommunication); Monte Carlo methods; cooperative communication; protocols; telecommunication power management; energy harvesting; Nakagami channels; probability; decode and forward communication; telecommunication network reliability

Other keywords: linear RF energy harvesting; asymptotic operation; Monte Carlo method; cooperative communication networks; destination node; communication networks; nonlinear energy harvesting models; selected relay nodes; outage probability expressions; independent identically distributed Nakagami-m; radio frequency energy harvesting; decode-and-forward protocols; relay node; system performance; amplify-and-forward protocols; selection combination method; approximate operation; linear energy harvesting models; source node; MATLAB software; dual-hop cooperative communication system

Subjects: Radio links and equipment; Monte Carlo methods; Probability theory, stochastic processes, and statistics; Protocols; Energy harvesting; Reliability; Telecommunication systems (energy utilisation); Energy harvesting

References

    1. 1)
      • 31. Suraweera, H.A., Smith, P.J., Nallanathan, A., et al: ‘Amplify-and-forward relaying with optimal and suboptimal transmit antenna selection’, IEEE Trans. Wirel. Commun., 2011, 10, (6), pp. 18741885.
    2. 2)
      • 35. Hung, C.-C., Chiang, C.-T., Yen, N.-Y., et al: ‘Outage probability of multiuser transmit antenna selection/maximal-ratio combining systems over arbitrary Nakagami-m fading channels’, IET Commun., 2010, 4, (1), pp. 6368.
    3. 3)
      • 27. Sudevalayam, S., Kulkarni, P.: ‘Energy harvesting sensor nodes: survey and implications’, IEEE Commun. Surv. Tutor., 2011, 13, (3), pp. 443461.
    4. 4)
      • 2. Bletsas, A., Shin, H., Win, M.Z.: ‘Cooperative communications with outage-optimal opportunistic relaying’, IEEE Trans. Commun., 2007, 6, (9), pp. 34503460.
    5. 5)
      • 18. Hoang, T.M., Tan, N.T., Hiep, P.T., et al: ‘Performance analysis of decode-and-forward partial relay selection in NOMA systems with RF energy harvesting’, Wirel. Netw., 2019, 25, pp. 45854595. Available at https://doi.org/10.1007/s11276-018-1746-8.
    6. 6)
      • 1. Laneman, J.N., Tse, D.N., Wornell, G.W.: ‘Cooperative diversity in wireless networks: efficient protocols and outage behavior’, IEEE Trans. Inf. Theory, 2004, 50, (12), pp. 30623080.
    7. 7)
      • 5. Lu, X., Wang, P., Niyato, D., et al: ‘Wireless networks with RF energy harvesting: a contemporary survey’, IEEE Commun. Tutor., 2015, 17, (2), pp. 757789.
    8. 8)
      • 34. Fedele, G.: ‘N-branch diversity reception of mary DPSK signals in slow and non selective Nakagami m fading’, IEEE Trans. Commun. Technol., 1996, 7, (2), pp. 119123.
    9. 9)
      • 13. Xu, X., McKelvey, T., Viberg, M., et al: ‘Simultaneous information and power transfer under a non-linear RF energy harvesting model’. Proc. IEEE Int. Conf. Communications Workshops (ICC Workshops), Paris, France, July 2017, pp. 179184.
    10. 10)
      • 36. Abramowitz, M., Stegun, I.A.: ‘Handbook of mathematical functions: with formulas, graphs, and mathematical tables’, vol. 55 (Courier Corporation Press, USA., 1964).
    11. 11)
      • 10. Chen, Y.: ‘Energy-harvesting AF relaying in the presence of interference and Nakagami-Fading’, IEEE Trans. Commun., 2016, 15, (2), pp. 10081017.
    12. 12)
      • 24. Bao, V.N.Q., Kong, H.Y.: ‘Performance analysis of decode-and-forward relaying with partial relay selection for multihop transmission over Rayleigh fading channels’, J. Commun. Netw., 2010, 12, (5), pp. 433441.
    13. 13)
      • 25. Nasir, A.A., Zhou, X., Durrani, S., et al: ‘Relaying protocols for wireless energy harvesting and information processing’, IEEE Trans. Wirel. Commun., 2013, 12, (7), pp. 36223636.
    14. 14)
      • 29. Stauffer, E., Oyman, O., Narasimhan, R., et al: ‘Finite-SNR diversity-multiplexing tradeoffs in fading relay channels’, IEEE J. Sel. Areas Commun., 2007, 25, (2), pp. 245257.
    15. 15)
      • 3. Duy, T.T., Duong, T.Q., Benevides, D., et al: ‘Proactive relay selection with joint impact of hardware impairment and co-channel interference’, IEEE Trans. Commun., 2015, 63, (5), pp. 15941606.
    16. 16)
      • 7. Vahidnia, R., Anpalagan, A., Mirzaei, J.: ‘Diversity combining in bi-directional relay networks with energy harvesting nodes’, IET Commun., 2016, 10, (2), pp. 207211.
    17. 17)
      • 33. Duy, T.T., Kong, H.-Y.: ‘Performance analysis of hybrid decode-amplify-forward incremental relaying cooperative diversity protocol using SNR-based relay selection’, IEEE Commun. Lett., 2012, 14, (6), pp. 703709.
    18. 18)
      • 19. Hoang, T.M., Son, V.V., Hiep, P.T., et al: ‘Optimizing duration of energy harvesting for downlink NOMA full-duplex over Nakagami-m fading channel’, Int. J. Electron. Commun., 2018, 95, pp. 199206.
    19. 19)
      • 21. Zwillinger, D.: ‘Table of integrals, series, and products’ (Elsevier Press, Holland, 2014, 1st edn.).
    20. 20)
      • 32. Krikidis, I., Thompson, J., McLaughlin, S., et al: ‘Amplify-and-forward with partial relay selection’, IEEE Commun. Lett., 2008, 12, (4), pp. 235237.
    21. 21)
      • 30. Hu, W.W., Huang, W.J., Li, C.P, et al: ‘Lifetime maximization in AF cooperative networks with energy-harvesting relays’. Proc. IEEE Int. Symp. Broadband Multimedia Systems Broadcasting (BMSB), Cagliari, Italy, June 2017, pp. 14.
    22. 22)
      • 26. Krikidis, I., Timotheou, S., Sasaki, S.: ‘RF energy transfer for cooperative networks: data relaying or energy harvesting’, IEEE Commun. Lett., 2012, 16, (11), pp. 17721775.
    23. 23)
      • 23. Senaratne, D., Tellambura, C.: ‘Unified exact performance analysis of two-hop amplify-and-forward relaying in Nakagami m fading’, IEEE Trans. Veh. Technol., 2010, 59, (3), pp. 15291534.
    24. 24)
      • 9. Son, P.N., Kong, H.Y., Anpalagan, A.: ‘Exact outage analysis of a decode-and-forward cooperative communication network with nth best energy harvesting relay selection’, Ann. Telecommun., 2016, 71, (5–6), pp. 251263.
    25. 25)
      • 15. Xiong, K., Wang, B., Liu, K.R.: ‘Rate-energy region of swipt for MIMO broadcasting under nonlinear energy harvesting model’, IEEE Trans. Wirel. Commun., 2017, 16, (8), pp. 51475161.
    26. 26)
      • 16. Dong, Y., Hossain, M., Cheng, J.: ‘Performance of wireless powered amplify and forward relaying over Nakagami-m fading channels with nonlinear energy harvester’, IEEE Commun. Lett., 2016, 20, (4), pp. 672675.
    27. 27)
      • 20. Hoang, T.M., Tan, N.T., Cao, N.B., et al: ‘Outage probability of MIMO relaying full-duplex system with wireless information and power transfer’. Proc. Conf. Information Communication Technology (CICT), Gwalior, India, November 2017, pp. 16.
    28. 28)
      • 17. Hoang, T.M., Duy, T.T., Bao, V.N.Q.: ‘On the performance of non-linear wirelessly powered partial relay selection networks over Rayleigh fading channels’. Proc. 3rd National Found Science and Technology Development Conf. (NICS), Danang, Vietnam, September 2016, vol. 10, no. 2, pp. 611.
    29. 29)
      • 8. Do, N.T., Bao, V.N.Q., An, B.: ‘A relay selection protocol for wireless energy harvesting relay networks’. Proc. 12th Advanced Technologies Communications (ATC), Ho Chi Minh, Vietnam, October 2015, vol. 10, no. 2, pp. 243247.
    30. 30)
      • 28. Krikidis, I., Zheng, G., Ottersten, B.: ‘Harvest-use cooperative networks with half/full-duplex relaying’. Proc. Wireless Communications and Networking Conf. (WCNC), Shanghai, China, April 2013, pp. 42564260.
    31. 31)
      • 22. Amin, O., Mesleh, R., Ikki, S.S., et al: ‘Performance analysis of multiple-relay cooperative systems with signal space diversity’, IEEE Trans. Veh. Technol., 2014, 64, (8), pp. 34143425.
    32. 32)
      • 12. Chen, Y., Sabnis, K.T., Abd-Alhameed, R.A.: ‘New formula for conversion efficiency of RF EH and its wireless applications’, IEEE Trans. Veh. Technol., 2016, 65, (11), pp. 94109414.
    33. 33)
      • 14. Clerckx, B., Zhang, R., Schober, R., et al: ‘Fundamentals of wireless information and power transfer: from RF energy harvester models to signal and system designs’, IEEE J. Sel. Areas Commun., 2019, 37, (1), pp. 433.
    34. 34)
      • 4. Duong, T.Q., Bao, V.N.Q., Zepernick, H.J.: ‘On the performance of selection decode-and-forward relay networks over Nakagami-m fading channels’, IEEE Commun. Lett., 2009, 13, (3), pp. 172174.
    35. 35)
      • 11. Boshkovska, E., Zlatanov, N., Schober, R., et al: ‘Practical non-linear energy harvesting model and resource allocation for swipt systems’, IEEE Commun. Lett., 2015, 19, (12), pp. 20822085.
    36. 36)
      • 6. Zhao, L., Wang, X., Zheng, K.: ‘Downlink hybrid information and energy transfer with Massive MIMO’, IEEE Commun. Mag., 2016, 15, (2), pp. 13091322.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2019.0612
Loading

Related content

content/journals/10.1049/iet-spr.2019.0612
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading