Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Peak correlation classifier (PCC) applied to FTIR spectra: a novel means of identifying toxic substances in mixtures

Fourier transform infrared (FTIR) spectrometry is commonly used for the identification of reference substances (RSs) in solid, liquid, or gaseous mixtures. An expert is generally required to perform the analysis, which is a bottleneck in emergency situations. This study proposes a support vector machine (SVM)-based algorithm, the peak correlation classifier (PCC), designed to rapidly detect the presence of a specific threat or reference substance in a sample. While SVM has been used in various spectrographic contexts, it has rarely been used on FTIR spectra. The proposed algorithm discovers correlation similarities between the FTIR spectrum of the RS and the test sample and then uses SVM to determine whether or not the RS is present in the sample. The study also shows how the additive nature of FTIR spectra can be used to create ‘synthetic’ substances that significantly improve the detection capability and decision confidence of the SVM classifier.

References

    1. 1)
      • 19. Fisher, R.A.: ‘The use of multiple measurements in taxonomic problems’, Ann. Eugenics, 1936, 7, pp. 179188.
    2. 2)
      • 20. Shen, J., Castan, S.: ‘An optimal linear operator for step edge detection’, CVGIP, Graph. Models Image Process., 1992, 54, (2), pp. 112133.
    3. 3)
      • 12. Zou, A.M., Ding, J., Shi, J.H., et al: ‘Charge state determination of peptide tandem mass spectra using support vector machine (svm)’. 2008 8th IEEE Int. Conf. on BioInformatics and BioEngineering, Athens, Greece, 2008, pp. 1–6.
    4. 4)
      • 13. Zhang, X., Lin, T., Xu, J., et al: ‘Deepspectra: an end-to-end deep learning approach for quantitative spectral analysis’, Anal. Chim. Acta, 2019, 1058, pp. 4857.
    5. 5)
      • 21. Pearson, K.: ‘Note on regression and inheritance in the case of two parents’, Proc. R. Soc. Lond. Ser. I, 1895, 58, pp. 240242.
    6. 6)
      • 14. Pierna, J.A.F., Baeten, V., Renier, A.M., et al: ‘Combination of support vector machines (SVM) and near-infrared (NIR) imaging spectroscopy for the detection of meat and bone meal (MBM) in compound feeds’, J. Chemom., 2004, 18, (7–8), pp. 341349.
    7. 7)
      • 29. King, D.E.: ‘Dlib-ml: a machine learning toolkit’, J. Mach. Learn. Res., 2009, 10, pp. 17551758.
    8. 8)
      • 7. de Boves Harrington, P.: ‘Support vector machine classification trees based on fuzzy entropy of classification’, Anal. Chim. Acta, 2017, 954, pp. 1421.
    9. 9)
      • 23. Lavine, B.K., Blank, T.R.: ‘Feed-forward neural networks’, in Brown, S., Tauler, R., Walczak, B. (Eds.): ‘Comprehensive chemometrics’ (Elsevier, Oxford, 2009, 2nd edn.), pp. 543554.
    10. 10)
      • 18. Rumelhart, D.E., McClelland, J.L., PDP Research Group (eds.): ‘Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations’ (MIT Press, Cambridge, MA, USA, 1986).
    11. 11)
      • 24. Vapnik, V.N.: ‘The nature of statistical learning theory’ (Springer-Verlag, Berlin, Heidelberg, 1995).
    12. 12)
      • 30. McNaught, A.D., Wilkinson, A.: ‘IUPAC compendium of chemical terminology: the gold book’ (WileyBlackwell, UK, 1997, 2nd Revised edn).
    13. 13)
      • 27. Raczko, E., Zagajewski, B.: ‘Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images’, Eur. J. Remote Sens., 2017, 50, (1), pp. 144154.
    14. 14)
      • 1. Virkler, K., Lednev, I.K.: ‘Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene’, Forensic Sci. Int., 2009, 188, (1), pp. 117.
    15. 15)
      • 17. Allegrini, F., Pierna, J.A.F., Fragoso, W.D., et al: ‘Regression models based on new local strategies for near infrared spectroscopic data’, Anal. Chim. Acta, 2016, 933, pp. 5058.
    16. 16)
      • 4. Luts, J., Ojeda, F., de Plas, R.V., et al: ‘A tutorial on support vector machine-based methods for classification problems in chemometrics’, Anal. Chim. Acta, 2010, 665, (2), pp. 129145.
    17. 17)
      • 22. Barron, L., Gilchrist, E.: ‘Ion chromatography-mass spectrometry: a review of recent technologies and applications in forensic and environmental explosives analysis’, Anal. Chim. Acta, 2014, 806, pp. 2754.
    18. 18)
      • 15. Eylenbosch, D., Bodson, B., Baeten, V., et al: ‘NIR hyperspectral imaging spectroscopy and chemometrics for the discrimination of roots and crop residues extracted from soil samples’, J. Chemometr., 2018, 32, (1), p. e2982.
    19. 19)
      • 9. Yi, L., Dong, N., Yun, Y., et al: ‘Chemometric methods in data processing of mass spectrometry-based metabolomics: a review’, Anal. Chim. Acta, 2016, 914, pp. 1734.
    20. 20)
      • 11. Webb-Robertson, B.J.M.: ‘Support vector machines for improved peptide identification from tandem mass spectrometry database search’, in Lipton, M.S., Paša-Tolic, L. (eds.): Methods in Molecular Biology (Humana Press, Totowa, NJ, 2009), pp. 453460.
    21. 21)
      • 8. Wu, J., Ji, Y., Zhao, L., et al: ‘A mass spectrometric analysis method based on PPCA and SVM for early detection of ovarian cancer’, Comput. Math. Methods Med., 2016, 2016, pp. 6169249:16169249:6.
    22. 22)
      • 16. Langeron, Y., Doussot, M., Hewson, D.J., et al: ‘Classifying NIR spectra of textile products with kernel methods’, Eng. Appl. Artif. Intell., 2007, 20, (3), pp. 415427.
    23. 23)
      • 26. French, R.M., Glady, Y., Thibaut, J.P.: ‘An evaluation of scanpath-comparison and machine-learning classification algorithms used to study the dynamics of analogy making’, Beh. Res. Meth., 2017, 49, (4), pp. 12911302.
    24. 24)
      • 28. Wright, A.H.: ‘Genetic algorithms for real parameter optimization’, in Rawlins, G.J.E. (ed.): ‘Foundations of genetic algorithms’ vol. 1, (Elsevier, USA, 1991), pp. 205218.
    25. 25)
      • 6. Zhang, X., Lu, X., Shi, Q., et al: ‘Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data’, BMC Bioinf., 2006, 7, (1), p. 197.
    26. 26)
      • 3. Vapnik, V.N.: ‘Statistical learning theory’ (Wiley, New York, USA, 1998).
    27. 27)
      • 25. Nair, S.S., French, R.M., Laroche, D., et al: ‘The application of machine learning algorithms to the analysis of electromyographic patterns from arthritic patients’, IEEE Trans. Neural Syst. Rehabil. Eng., 2010, 18, (2), pp. 174184.
    28. 28)
      • 2. Kumar, R., Sharma, V.: ‘Chemometrics in forensic science’, TRAC Trends Anal. Chem., 2018, 105, pp. 191201.
    29. 29)
      • 5. Noble, W.S.: ‘What is a support vector machine?’, Nat. Biotechnol., 2006, 24, pp. 113.
    30. 30)
      • 10. Parfait, S., Walker, P.M., Créhange, G., et al: ‘Classification of prostate magnetic resonance spectra using support vector machine’, Biomed. Signal Proc. Control, 2012, 7, (5), pp. 499508.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2019.0575
Loading

Related content

content/journals/10.1049/iet-spr.2019.0575
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address