access icon free Multi-kernel-based random vector functional link network with decomposed features for epileptic EEG signal classification

This study proposes an improved hybrid model built with empirical mode decomposition (EMD) features combined with weighted multi-kernel random vector functional link network (WMKRVFLN) where the kernel parameters are optimised with an efficient optimisation algorithm known as water cycle algorithm (WCA) for diagnosis and classification of epileptic electroencephalogram (EEG) signals. The proposed model with optimisation is known as WCA–EMD–WMKRVFLN. The tanh and wavelet kernel functions are contributing together to the effectiveness of the proposed model. The features generated from EMD in terms of intrinsic mode functions (IMFs) are modulated to find important statistical and entropy based features and these features in a reduced form are employed as inputs to the model to classify epileptic EEG signals. The presented approach is evaluated in terms of percentage correct classification accuracy (ACC), specificity and sensitivity using two datasets and is compared with different classifiers and state-of-the-art techniques. The highest accuracies of 99.69% (five-class) and 100% (three-class) achieved using the Bonn-University dataset and 99.0% ACC (two-class) achieved using the Bern-Barcelona dataset. The achieved results report that the presented approach is a promising approach for EEG signal classification and is superior to several state-of-the-art techniques and is highly comparable to many such techniques.

Inspec keywords: entropy; wavelet transforms; electroencephalography; medical signal processing; signal classification; image classification; feature extraction; support vector machines; optimisation

Other keywords: epileptic EEG signal classification; entropy based features; decomposed features; multikernel random vector functional link network; kernel functions; epileptic electroencephalogram signals; multikernel-based random vector functional link network; important statistical based features; epileptic EEG signals; improved hybrid model; sensitivity; intrinsic mode functions; efficient optimisation algorithm; WCA–EMD–WMKRVFLN; kernel parameters; water cycle algorithm; empirical mode decomposition

Subjects: Biology and medical computing; Electrical activity in neurophysiological processes; Digital signal processing; Knowledge engineering techniques; Computer vision and image processing techniques; Electrodiagnostics and other electrical measurement techniques; Bioelectric signals; Other topics in statistics; Other topics in statistics; Signal processing and detection

References

    1. 1)
      • 25. Sharma, R., Pachori, R., Acharya, U.: ‘Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals’, Entropy, 2015, 17, (2), pp. 669691.
    2. 2)
      • 16. Ghosh-Dastidar, S., Adeli, H., Dadmehr, N.: ‘Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection’, IEEE Trans. Biomed. Eng., 2007, 54, (9), pp. 15451551.
    3. 3)
      • 29. Jia, J., Goparaju, B., Song, J., et al: ‘Automated identification of epileptic seizures in EEG signals based on phase space representation and statistical features in the CEEMD domain’, Biomed. Signal Process., 2017, 38, pp. 148157.
    4. 4)
      • 26. Sharma, R., Pachori, R.B.: ‘Automated classification of focal and non-focal EEG signals based on bivariate empirical mode decomposition’, in Kolekar, M.H., Kumar, V. (Eds.): ‘Biomedical signal and image processing in patient care’ (IGI Global, USA, 2018), pp. 1333.
    5. 5)
      • 1. Acharya, U.R., Sree, S.V., Swapna, G., et al: ‘Automated EEG analysis of epilepsy: a review’, Knowl.-Based Syst., 2013, 45, pp. 147165.
    6. 6)
      • 30. Das, A. B., Bhuiyan, M. I. H.: ‘Discrimination and classification of focal and non-focal EEG signals using entropy-based features in the EMD–DWT domain’, Biomed. Signal Process., 2016, 29, pp. 1121.
    7. 7)
      • 4. Tawfik, N. S., Youssef, S. M., Kholief, M.: ‘A hybrid automated detection of epileptic seizures in EEG records’, Comput. Electr. Eng., 2016, 53, pp. 177190.
    8. 8)
      • 48. Hasan, M., Ahamed, M., Ahmad, M., et al: ‘Prediction of epileptic seizure by analysing time series EEG signal using-NN classifier’, Appl. Bionics Biomech., 2017, 2017, pp. 112.
    9. 9)
      • 50. Jahanshahi, H., Shahriari-Kahkeshi, M., Alcaraz, R., et al: ‘Entropy analysis and neural network-based adaptive control of a non-equilibrium four-dimensional chaotic system with hidden attractors’, Entropy, 2019, 21, (2), p. 156.
    10. 10)
      • 5. Fasil, O. K., Rajesh, R.: ‘Time-domain exponential energy for epileptic EEG signal classification’, Neurosci. Lett., 2019, 694, pp. 18.
    11. 11)
      • 34. Acharya, U. R., Oh, S. L., Hagiwara, Y., et al: ‘Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals’, Comput. Biol. Med., 2018, 100, pp. 270278.
    12. 12)
      • 9. Polat, K., Güneş, S.: ‘Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform’, Appl Math Comput, 2007, 187, (2), pp. 10171026.
    13. 13)
      • 28. Liang, S.F., Wang, H.C., Chang, W.L.: ‘Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection’, EURASIP J. Adv. Signal Process., 2010, (1), pp. 115.
    14. 14)
      • 10. Tzallas, A.T., Tsipouras, M.G., Fotiadis, D.I.: ‘Epileptic seizure detection in EEGs using time–frequency analysis’, IEEE Trans. Inf. Technol. Biomed., 2009, 13, (5), pp. 703710.
    15. 15)
      • 17. Tsipouras, M. G.: ‘Spectral information of EEG signals with respect to epilepsy classification’, EURASIP J. Adv. Signal Process., 2019, 10, (2019), doi: 10.1186/s13634-019-0606-8.
    16. 16)
      • 8. Deriche, M., Arafat, S., Al-Insaif, S., et al: ‘Eigenspace time frequency based features for accurate seizure detection from EEG data’, IRBM, 2019, 40, (2), pp. 122132.
    17. 17)
      • 46. Eskandar, H., Sadollah, A., Bahreininejad, A., et al: ‘Water cycle algorithm–a novel metaheuristic optimization method for solving constrained engineering optimization problems’, Comput. Struct., 2012, 110, pp. 151166.
    18. 18)
      • 24. Subasi, A.: ‘EEG signal classification using wavelet feature extraction and a mixture of expert model’, Expert Syst Appl, 2007, 32, (4), pp. 10841093.
    19. 19)
      • 32. Lee, H. K., Choi, Y. S.: ‘A convolution neural networks scheme for classification of motor imagery EEG based on wavelet time-frequency image’. IEEE 2018 Int. Conf. on Information Networking (ICOIN), Chiang Mai, Thailand, January 2018, pp. 906909, doi: org/10.1007/s00500-019-04515-0.
    20. 20)
      • 13. Li, M., Chen, W., Zhang, T.: ‘Automatic epileptic EEG detection using DT–CWT-based non-linear features’, Biomed. Signal Process., 2017, 34, pp. 114125.
    21. 21)
      • 22. Zhang, T., Chen, W., Li, M.: ‘Generalized Stockwell transform and SVD-based epileptic seizure detection in EEG using random forest’, Biocybern. Biomed. Eng., 2018, 38, (3), pp. 519534.
    22. 22)
      • 19. Zhang, T., Chen, W., Li, M.: ‘Fuzzy distribution entropy and its application in automated seizure detection technique’, Biomed. Signal Process., 2018, 39, pp. 360377.
    23. 23)
      • 12. Guo, L., Rivero, D., Pazos, A.: ‘Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks’, J. Neurosci. Methods, 2010, 193, (1), pp. 156163.
    24. 24)
      • 14. Güler, I., Übeyli, E. D.: ‘Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients’, J. Neurosci. Methods, 2005, 148, (2), pp. 113121.
    25. 25)
      • 33. Nagabushanam, P., George, S. T., Radha, S.: ‘EEG signal classification using LSTM and improved neural network algorithms’, Soft Comput., 2019, pp. 123.
    26. 26)
      • 7. Arunkumar, N., Ramkumar, K., Venkatraman, V., et al: ‘Classification of focal and non focal EEG using entropies’, Pattern Recognit. Lett., 2017, 94, pp. 112117.
    27. 27)
      • 49. Rostaghi, M., Azami, H.: ‘Dispersion entropy: a measure for time-series analysis’, IEEE Signal Process. Lett., 2016, 23, (5), pp. 610614.
    28. 28)
      • 3. Acharya, U. R., Molinari, F., Sree, S. V., et al: ‘Automated diagnosis of epileptic EEG using entropies’, Biomed. Signal Process., 2012, 7, (4), pp. 401408.
    29. 29)
      • 27. Bajaj, V., Pachori, R.B.: ‘Classification of seizure and nonseizure EEG signals using empirical mode decomposition’, IEEE Trans. Inf. Technol. B, 2011, 16, (6), pp. 11351142.
    30. 30)
      • 45. Xu, K.K., Li, H.X., Yang, H.D.: ‘Kernel-based random vector functional-link network for fast learning of spatiotemporal dynamic processes’, IEEE Trans. Syst. Man. Cybern: Syst., 2017, 49, (5), pp. 10161026.
    31. 31)
      • 44. Bisoi, R., Dash, P. K., Mishra, S. P.: ‘Modes decomposition method in fusion with robust random vector functional link network for crude oil price forecasting’, Appl. Soft Comput., 2019, 80, pp. 475493.
    32. 32)
      • 15. Guler, I., Ubeyli, E. D.: ‘Multiclass support vector machines for EEG-signals classification’, IEEE Trans. Inf. Technol. B, 2007, 11, (2), pp. 117126.
    33. 33)
      • 40. Zhang, Y., Wang, Y., Zhou, G., et al: ‘Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces’, Expert Syst. Appl., 2018, 96, pp. 302310.
    34. 34)
      • 20. Alickovic, E., Kevric, J., Subasi, A.: ‘Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction’, Biomed. Signal Process., 2018, 39, pp. 94102.
    35. 35)
      • 21. Patidar, S., Panigrahi, T.: ‘Detection of epileptic seizure using Kraskov entropy applied on tunable-Q wavelet transform of EEG signals’, Biomed. Signal Process., 2017, 34, pp. 7480.
    36. 36)
      • 23. Li, M., Chen, W., Zhang, T.: ‘Application of MODWT and log-normal distribution model for automatic epilepsy identification’, Biocybern. Biomed. Eng., 2017, 3, (4), pp. 679689.
    37. 37)
      • 39. Liu, X., Wang, L., Huang, G. B., et al: ‘Multiple kernel extreme learning machine’, Neurocomputing, 2015, 149, pp. 253264.
    38. 38)
      • 2. Altunay, S., Telatar, Z., Erogul, O.: ‘Epileptic EEG detection using the linear prediction error energy’, Expert Syst Appl, 2010, 37, (8), pp. 56615665.
    39. 39)
      • 42. Murugavel, A.M., Ramakrishnan, S.: ‘Hierarchical multi-class SVM with ELM kernel for epileptic EEG signal classification’, Med. Biol. Eng. Comput., 2016, 54, (1), pp. 149161.
    40. 40)
      • 35. Norouzi, M., Ranjbar, M., Mori, G.: ‘Stacks of convolutional restricted Boltzmann machines for shift-invariant feature learning’. IEEE Conf. on Computer Vision and Pattern Recognition, Miami, FL, USA, June 2009, pp. 27352742.
    41. 41)
      • 11. Tzallas, A. T., Tsipouras, M. G., Fotiadis, D. I.: ‘Automatic seizure detection based on time-frequency analysis and artificial neural networks’, Comput. Intell. Neurosci., 2007, 2007, pp. 113, doi: 10.1155/2007/80510.
    42. 42)
      • 18. Ghosh-Dastidar, S., Adeli, H., Dadmehr, N.: ‘Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection’, IEEE Trans. Biomed. Eng., 2008, 55, (2), pp. 512518.
    43. 43)
      • 37. Avci, E., Coteli, R.: ‘A new automatic target recognition system based on wavelet extreme learning machine’, Expert Syst Appl, 2012, 39, (16), pp. 1234012348.
    44. 44)
      • 38. Chen, L. L., Zhang, J., Zou, J. Z., et al: ‘A framework on wavelet-based nonlinear features and extreme learning machine for epileptic seizure detection’, Biomed. Signal Process., 2014, 10, pp. 110.
    45. 45)
      • 31. Wen, T., Zhang, Z.: ‘Deep convolution neural network and autoencoders-based unsupervised feature learning of EEG signals’, IEEE Access, 2018, 6, pp. 2539925410.
    46. 46)
      • 47. Andrzejak, R.G., Lehnertz, K., Mormann, F., et al: ‘Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state’, Phys. Rev. E, 2001, 64, (6), p. 061907.
    47. 47)
      • 36. Huang, G. B., Zhu, Q. Y., Siew, C. K.: ‘Extreme learning machine: theory and application’, Neurocomputing, 2006, 70, (1–3), pp. 489501.
    48. 48)
      • 43. Zhang, L., Suganthan, P.N.: ‘A comprehensive evaluation of random vector functional link networks’, Inf. Sci., 2016, 367, pp. 10941105.
    49. 49)
      • 6. Naghsh-Nilchi, A. R., Aghashahi, M.: ‘Epilepsy seizure detection using Eigen-system spectral estimation and multiple layer perceptron neural network’, Biomed. Signal Process., 2010, 5, (2), pp. 147157.
    50. 50)
      • 41. Jin, Z., Zhou, G., Gao, D., et al: ‘EEG classification using sparse Bayesian extreme learning machine for brain–computer interface’, Neural Comput Appl, 2018, pp. 19, https://doi.org/10.1007/s00521-018-3735-3.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2019.0277
Loading

Related content

content/journals/10.1049/iet-spr.2019.0277
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading