Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Denoising method for capillary electrophoresis signal via learned tight frame

Since capillary electrophoresis (CE) signals are always contaminated by random noise, which has negative influence on the accuracy of detection and analysis, it is necessary to remove noise before further applications of the CE signals. In this study, a tight frame learned from the data itself is applied to the removal of noise for CE signals. To achieve an effective decomposition of the CE signal, a one-dimensional discrete tight frame tailored to the input signal is first constructed by introducing tight frame constraint into the popular dictionary learning model. Then, due to each subband containing different information of the noise, an adaptive threshold is computed to shrink the detail coefficients instead of using a global threshold. Finally, the denoised CE signal is reconstructed from the thresholded coefficients by using the inverse transform of the tight frame. To evaluate the denoising efficiency, the proposed method is applied to the simulated CE signals and real CE signals. Experimental results indicate that compared with other denoising methods, the proposed method obtains a better shape preservation of the peaks as well as a higher signal-to-noise ratio.

References

    1. 1)
      • 17. Wang, Y., Gao, Q.: ‘Spatially adaptive stationary wavelet thresholding for the denoising of DNA capillary electrophoresis signal’, J. Anal. Chem., 2008, 63, (8), pp. 841847.
    2. 2)
      • 14. Paredes, J.L.: ‘A baseline correction algorithm for capillary electrophoresis data using local optimization of the legend algorithm in the wavelet domain’, Interciencia, 2009, 34, (8), pp. 556562.
    3. 3)
      • 2. Rokhas, M.K., Rönn, J.L., Wiklund, C., et al: ‘Analysis of butterfly reproductive proteins using capillary electrophoresis and mass spectrometry’, Anal. Biochem., 2019, 566, (2019), pp. 2326.
    4. 4)
      • 30. Cai, J.F., Ji, H., Shen, Z., et al: ‘Data-driven tight frame construction and image denoising’, Appl. Comput. Harmon. Anal., 2014, 37, pp. 89105.
    5. 5)
      • 21. Chen, W.: ‘Simultaneously sparse and low-rank matrix reconstruction via non-convex and non-separable regularization’, IEEE Trans. Signal Process., 2018, 66, (20), pp. 53135323.
    6. 6)
      • 19. Shahdoosti, H.R., Hazavei, S.M.: ‘Image denoising in dual contourlet domain using hidden Markov tree models’, Digit. Signal Process., 2017, 67, pp. 1729.
    7. 7)
      • 4. Solis, A., Rex, M., Campiglia, A.D., et al: ‘Accelerated multiple-pass moving average: a novel algorithm for baseline estimation in CE and its application to baseline correction on real-time bases’, Electrophoresis, 2007, 28, (8), pp. 11811188.
    8. 8)
      • 9. García-Pérez, I., Vallejo, M., Garca, A., et al: ‘Metabolic fingerprinting with capillary electrophoresis’, J. Chromatogr. A, 2008, 1204, (2), pp. 130139.
    9. 9)
      • 5. Zhang, H., Liui, X., Shao, X., et al: ‘The study of the improved wavelet thresholding with translation invariant de-noising on capillary electrophoresis signal’. Fourth IEEE Int. Conf. Nano/Micro Engineered and Molecular Systems, Shenzhen, China, 2009, vol. 314, pp. 10991102.
    10. 10)
      • 29. Zou, L., He, Q., Wu, J.: ‘Source cell phone verification from speech recordings using sparse representation’, Digit. Signal Process., 2017, 62, pp. 125136.
    11. 11)
      • 16. Abdelnour, F.: ‘Symmetric tight frame wavelets with dilation factor M = 4’, Signal Process., 2011, 91, (12), pp. 28522863.
    12. 12)
      • 28. Lesage, S., Gribonval, R., Bimbot, F., et al: ‘Learning unions of orthonormal bases with thresholded singular value decomposition’. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Philadelphia, PA, USA, 2005, vol. 5, pp. 293296.
    13. 13)
      • 18. Xu, X., Wang, Y., Chen, S.: ‘Medical image fusion using discrete fractional wavelet transform’, Biomed. Signal Proc. Control, 2016, 27, pp. 103111.
    14. 14)
      • 23. Dian, R., Li, S., Fang, L.: ‘Multispectral and hyperspectral image fusion with spatial-spectral sparse representation’, Inf. Fusion, 2019, 49, (2019), pp. 262270.
    15. 15)
      • 26. Kreutz-Delgado, K., Murray, J.F., Rao, B.D., et al: ‘Dictionary learning algorithms for sparse representation’, Neural Comput., 2003, 15, (2), pp. 349396.
    16. 16)
      • 32. Stewart, R., Wee, A., Grayden, D.B., et al: ‘Capillary electrophoresis (CE) peak detection using a wavelet transform technique’. Proc. SPIE, Biomedical Applications of Micro- and Nanoengineering IV and Complex Systems, Melbourne, Australia, 2008, vol. 7270, pp. 112.
    17. 17)
      • 11. Perrin, C., Walczak, B., Massart, D.: ‘The use of wavelets for signal denoising in capillary electrophoresis’, Anal. Chem., 2001, 73, (20), pp. 49034917.
    18. 18)
      • 31. Zou, H., Hastie, T., Tibshirani, R.: ‘Sparse principle component analysis’, J. Comput. Graph. Stat., 2006, 15, (2), pp. 265286.
    19. 19)
      • 27. Rubinstein, R.: ‘Dictionaries for sparse representation modeling’, Proc. IEEE, 2010, 98, (6), pp. 10451057.
    20. 20)
      • 33. Graves-Morris, P.R., Fell, A.F., Bensalem, M.: ‘Parameterisation of symmetrical peaks in capillary electrophoresis using [3/2]-type rational approximates’, J. Comput. Appl. Math., 2006, 189, (1–2), pp. 220227.
    21. 21)
      • 6. Gao, Q., Lu, Y., Sun, D., et al: ‘A multiscale products technique for denoising of DNA capillary electrophoresis signals’, Meas. Sci. Technol., 2013, 24, pp. 065004-1065004-9.
    22. 22)
      • 10. Krawczyk, M., Gerkmann, T.: ‘STFT phase reconstruction in voiced speech for an improved single-channel speech enhancement’, IEEE/ACM Trans. Audio Speech Lang. Process., 2014, 22, (12), pp. 40654080.
    23. 23)
      • 3. Jarméus, A., Emmer, Å.: ‘CE determination of monosaccharides in pulp using indirect detection and curve fitting’, Chromatographia, 2008, 67, (1–2), pp. 151155.
    24. 24)
      • 7. Schafer, R.W.: ‘What is a Savitzky–Golay filter?’, IEEE Signal Process. Mag., 2011, 28, (4), pp. 111117.
    25. 25)
      • 34. Donoho, D.L., Johnstone, J.M.: ‘Ideal spatial adaptation by wavelet shrinkage’, Biometrika, 1994, 81, (3), pp. 425455.
    26. 26)
      • 35. Chang, S.G., Yu, B., Vetterli, M.: ‘Spatially adaptive wavelet thresholding with context modeling for image denoising’, IEEE Trans. Image Process., 2000, 9, (9), pp. 15221531.
    27. 27)
      • 20. Rencker, L., Bach, F., Wang, W., et al: ‘Sparse recovery and dictionary learning from non-linear compressive measurements’, IEEE Trans. Signal Process., 2019, 67, (21), pp. 56595670.
    28. 28)
      • 15. Stewart, R., Gideoni, I., Zhu, Y.: ‘Signal processing methods for capillary electrophoresis’, in Yang, N.S. (Eds.): ‘Systems and computational biology – bioinformatics and computational modeling’ (InTech, USA., 2011), pp. 311333.
    29. 29)
      • 36. Estrada, E.G., Cosmes, W.: ‘Shapiro–Wilk test for skew normal distributions based on data transformations’, J. Stat. Comput. Simul., 2019, 89, (17), pp. 32583272.
    30. 30)
      • 22. Aharon, M., Elad, M., Bruckstein, A.: ‘K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation’, IEEE Trans. Signal Process., 2006, 54, (11), pp. 43114322.
    31. 31)
      • 1. Chen, G., Zhu, X., Dou, X., et al: ‘Analysis of capillary electrophoresis noise characteristics’, Acta Photonica Sin., 2017, 46, (6), p. 0612004.
    32. 32)
      • 12. Cao, H., Fan, F., Zhou, K., et al: ‘Wheel-bearing fault diagnosis of trains using empirical wavelet transform’, Measurement, 2016, 82, (2016), pp. 439449.
    33. 33)
      • 25. Lu, Y., Gao, Q., Sun, D., et al: ‘SAR speckle reduction using Laplace mixture model and spatial mutual information in the directionlet domain’, Neurocomputing, 2016, 173, (3), pp. 633644.
    34. 34)
      • 8. Browne, M., Mayer, N., Cutmore, T.R.H.: ‘A multiscale polynomial filter for adaptive smoothing’, Digit. Signal Process., 2007, 17, (1), pp. 6975.
    35. 35)
      • 13. Yang, C., He, Z., Yu, W.: ‘Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis’, BMC Bioinf., 2009, 10, (1), pp. 410.
    36. 36)
      • 24. Han, Q., Xie, Q., Peng, S., et al: ‘Simultaneous spectrum fitting and baseline correction using sparse representation’, Analyst, 2017, 142, (13), pp. 24602468.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2019.0242
Loading

Related content

content/journals/10.1049/iet-spr.2019.0242
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address