access icon free Minimum mean squares error beamforming with cyclic sub-vector optimisation

A cyclic sub-vector optimisation (CSVO) beamforming approach is investigated. With the proposed algorithm, an array beamforming vector is partitioned into a number of sub-vectors of small sizes, allowing reduced-dimension processing. Then multiple optimisation cycles are carried out by the block coordinate descent method, which leads to an optimal beamforming vector. The proposed scheme still needs to compute the matrix inversion, but the size of the matrix can be flexibly chosen and the computational complexity is manageable. The proof of the convergence and complexity analysis is given. The simulation results demonstrate the effectiveness and fine features of the proposed algorithm. Although the convergence rate of the CSVO is slightly slower, the CSVO has lower computational complexity than that of the diagonal loading conjugate gradient applied to normal equations algorithm. In comparison with other sub-vector approaches, the proposed algorithm gains a faster convergence rate and improved stability.

Inspec keywords: gradient methods; conjugate gradient methods; least mean squares methods; array signal processing; computational complexity; least squares approximations; convergence of numerical methods; optimisation; vectors; matrix inversion; iterative methods; mean square error methods

Other keywords: array beamforming vector; multiple optimisation cycles; reduced-dimension minimum mean squares error; complexity analysis; CSVO; normal equations algorithm; optimal beamforming vector; cyclic sub-vector optimisation beamforming approach; reduced-dimension processing; sub-vector approaches; convergence; matrix inversion

Subjects: Other topics in statistics; Optimisation techniques; Optimisation techniques; Interpolation and function approximation (numerical analysis); Interpolation and function approximation (numerical analysis); Radio links and equipment; Signal processing and detection

References

    1. 1)
      • 30. Frost, O.L.: ‘An algorithm for linearly constrained adaptive array processing’, Proc. IEEE, 1972, 60, (8), pp. 926935.
    2. 2)
      • 20. Pados, D.A., Karystinos, G.N.: ‘An iterative algorithm for the computation of the MVDR filter’, IEEE Trans. Signal Process., 2001, 49, (2), pp. 290300.
    3. 3)
      • 9. Poulo, S.R.D.: ‘Adaptive filtering: algorithms and practical implementations’ (Springer, New York, 2013, 4th edn.).
    4. 4)
      • 23. Weippert, M.E., Hiemstra, J.D., Goldstein, J.S.: ‘Insights from the relationship between the multistage Wiener filter and the method of conjugate gradients’. 2002 IEEE Sensor Array and Multichannel Signal Processing Workshop, Rosslyn, VA, USA, 2002, pp. 388392.
    5. 5)
      • 12. Tang, J., Wang, X.Q., Peng, Y.N.: ‘Sub-array RLS adaptive algorithm’, Electron. Lett., 1999, 35, (13), pp. 10611063.
    6. 6)
      • 4. Niu, H., Zhang, B., Huang, Y., et al: ‘Robust secrecy beamforming and power-splitting design for multiuser MISO downlink with SWIPT’, IEEE Syst. J., 2018, 13, (2), pp. 13671375.
    7. 7)
      • 6. Shi, W., Li, Y., Yin, J.: ‘Improved constraint NLMS algorithm for sparse adaptive array beamforming control applications’, Appl. Comput. Electromagn. Soc. J., 2019, 34, (3), pp. 419424.
    8. 8)
      • 28. Zhao, W., Lin, J.Q., Chan, S.C., et al: ‘A division-free and variable-regularized LMS-based generalized sidelobe canceller for adaptive beamforming and its efficient hardware realization’, IEEE Access, 2018, 6, pp. 64 47064 485.
    9. 9)
      • 18. Zhang, M., Zhang, A., Li, J.: ‘Fast and accurate rank selection methods for multistage Wiener filter’, IEEE Trans. Signal Process., 2016, 64, (4), pp. 973984.
    10. 10)
      • 26. Wang, L., de Lamare, R.C., Haardt, M.: ‘Direction finding algorithms based on joint iterative subspace optimization’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (4), pp. 25412553.
    11. 11)
      • 24. Somasundaram, S.D., Parsons, N.H., Li, P., et al: ‘Reduced-dimension robust capon beamforming using Krylov-subspace techniques’, IEEE Trans. Aerosp. Electron. Syst., 2015, 51, (1), pp. 270289.
    12. 12)
      • 22. Besson, O., Montesinos, J.: ‘On convergence of the auxiliary-vector beamformer with rank-deficient covariance matrices’, IEEE Signal Process. Lett., 2009, 16, (4), pp. 249252.
    13. 13)
      • 1. Zhu, Z., Chu, Z., Wang, N., et al: ‘Beamforming and power splitting designs for AN-aided secure multi-user MIMO SWIPT systems’, IEEE Trans. Inf. Forensics Sec., 2017, 12, (12), pp. 28612874.
    14. 14)
      • 25. Zhang, M., Zhang, A., Yang, Q.: ‘Robust adaptive beamforming based on conjugate gradient algorithms’, IEEE Trans. Signal Process., 2016, 64, (22), pp. 60466057.
    15. 15)
      • 11. Yu, S.J., Lee, J.H.: ‘Adaptive array beamforming based on an efficient technique’, IEEE Trans. Antennas Propag., 1996, 44, (8), pp. 10941101.
    16. 16)
      • 19. Parthapratim, D.: ‘Semi-blind sparse channel estimation using reduced rank filtering’, IEEE Trans. Wirel. Commun., 2018, 17, (3), pp. 14181431.
    17. 17)
      • 3. Zhu, Z., Huang, S., Chu, Z., et al: ‘Robust designs of beamforming and power splitting for distributed antenna systems with wireless energy harvesting’, IEEE Syst. J., 2018, 13, (1), pp. 3041.
    18. 18)
      • 5. Huang, F., Sheng, W., Ma, X., et al: ‘Robust adaptive beamforming for large-scale arrays’, Signal Process., 2010, 90, (1), pp. 165172.
    19. 19)
      • 21. Wang, L., de Lamare, R.C.: ‘Adaptive constrained constant modulus algorithm based on auxiliary vector filtering for beamforming’, IEEE Trans. Signal Process., 2010, 58, (10), pp. 54085413.
    20. 20)
      • 14. Wang, W., Sheng, W.X., Qi, B.Y.: ‘Subarray adaptive array beamforming algorithm based on LCMV’. Asia Pacific Microwave Conf. Proc., Suzhou, China, March 2006, vol. 3, pp. 19641966.
    21. 21)
      • 29. Jose, F.A., Marcello, L.R.C., Jose, A.A.: ‘L1-constrained normalized LMS algorithms for adaptive beamforming’, IEEE Trans. Signal Process., 2015, 63, (24), pp. 65246539.
    22. 22)
      • 17. Goldstein, J.S., Reed, I.S., Scharf, L.L.: ‘A multistage representation of the Wiener filter based on orthogonal projections’, IEEE Trans. Inf. Theory, 1998, 44, (7), pp. 29432959.
    23. 23)
      • 10. Monzingo, R.A., Miller, T.W.: ‘Introduction to adaptive arrays’ (Wiley, New York, 1980).
    24. 24)
      • 7. Eweda, E., Bershad, N.J., Bermudez, J.C.M.: ‘Stochastic analysis of the LMS and NLMS algorithms for cyclostationary white Gaussian and non-Gaussian inputs’, IEEE Trans. Signal Process., 2018, 66, (18), pp. 47534765.
    25. 25)
      • 2. Zhu, Z., Chu, Z., Zhou, F., et al: ‘Secure beamforming designs for secrecy MIMO SWIPT systems’, IEEE Wirel. Commun. Lett., 2017, 7, (3), pp. 424427.
    26. 26)
      • 8. Qin, B., Cai, Y., Champagne, B., et al: ‘A low-complexity variable forgetting factor constant modulus RLS algorithm for blind adaptive beamforming’, Signal Process., 2014, 105, (12), pp. 277282.
    27. 27)
      • 27. Chapman, J.D.: ‘Partial adaptivity for the large array’, IEEE Trans. Aerosp. Electron. Syst., 1976, 24, (5), pp. 685696.
    28. 28)
      • 31. Ruan, H., de Lamare, R.C.: ‘Robust adaptive beamforming based on low-rank and cross-correlation techniques’, IEEE Trans. Signal Process., 2016, 64, (15), pp. 39193932.
    29. 29)
      • 13. Huang, F., Sheng, W.X., Qi, B.Y., et al: ‘A new fast adaptive beamforming method based on LMS algorithm’. Processing on Asia-Pacific Microwave Conf., Suzhou, China, December 2005, vol. 3, pp. 47.
    30. 30)
      • 16. Song, N., Alokozai, W.U., de Lamare, R.C., et al: ‘Adaptive widely linear reduced-rank beamforming based on joint iterative optimization’, IEEE Signal Process. Lett., 2014, 21, (3), pp. 265269.
    31. 31)
      • 15. Li, X., Feng, D., Liu, H.W., et al: ‘Dimension-reduced space-time adaptive clutter suppression algorithm based on lower-rank approximation to weight matrix in airborne radar’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (1), pp. 5369.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2019.0164
Loading

Related content

content/journals/10.1049/iet-spr.2019.0164
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading