access icon free Augmented EMD for complex-valued univariate signals

In this study, the authors propose an efficient extension of the standard empirical mode decomposition (EMD) for complex-valued univariate signal decomposition. The key idea of the extension is to convert a complex-valued univariate signal into a longer real-valued signal by augmenting the real part with the flipped imaginary part, and then to decompose it into intrinsic mode functions (IMFs) using the EMD once only. The bivariate IMFs are then retrieved from the obtained IMFs. Their empirical results on synthetic data show that the proposed method significantly outperforms the traditional bivariate EMD (BEMD) method in terms of computational efficiency while producing a comparable extraction error. Moreover, the proposed method shows better micro-Doppler signature analysis performance on physically measured continuous-wave radar data than that of the BEMD.

Inspec keywords: radar signal processing; feature extraction; signal processing; time-frequency analysis; Hilbert transforms; Doppler radar

Other keywords: traditional bivariate EMD method; intrinsic mode functions; flipped imaginary part; augmented EMD; standard empirical mode decomposition; IMFs; efficient extension; complex-valued univariate signal decomposition

Subjects: Other topics in statistics; Radar equipment, systems and applications; Signal processing and detection

References

    1. 1)
      • 11. Rehman, N., Mandic, D.P.: ‘Empirical mode decomposition for trivariate signals’, IEEE Trans. Signal Process., 2010, 58, (3), pp. 10591068.
    2. 2)
      • 8. Rilling, G., Flandrin, P., Gonçalves, P., et al: ‘Bivariate empirical mode decomposition’, IEEE Signal Process. Lett., 2007, 14, (12), pp. 936939.
    3. 3)
      • 18. Huang, W., Zeng, J., Wang, Z., et al: ‘Partial noise assisted multivariate EMD: an improved noise assisted method for multivariate signals decomposition’, Biomed. Signal Process. Control, 2017, 36, pp. 205220.
    4. 4)
      • 10. Rehman, N., Safdar, M.W., Rehman, U., et al: ‘Dynamically-sampled bivariate empirical mode decomposition’, IEEE Signal Process. Lett., 2014, 21, (7), pp. 857861.
    5. 5)
      • 12. Hemakom, A., Ahrabian, A., Looney, D., et al: ‘Nonuniformly sampled trivariate empirical mode decomposition’. Proc. Int. Conf. Acoustics, Speech and Signal Processing, Queensland, Australia, April 2015, pp. 36913695.
    6. 6)
      • 7. Altaf, M.U.B., Gautama, T., Tanaka, T., et al: ‘Rotation invariant complex empirical mode decomposition’. Proc. Int. Conf. Acoustics, Speech and Signal Processing, Honolulu, USA, April 2007, pp. 10091112.
    7. 7)
      • 22. Horn, R.A., Johnson, C.R.: ‘Matrix analysis’ (Cambridge University Press, UK, 2012).
    8. 8)
      • 2. Khaldi, K., Boudraa, A.O., Turki, M.: ‘Voiced/unvoiced speech classification-based adaptive filtering of decomposed empirical modes for speech enhancement’, IET Signal Process., 2016, 10, (1), pp. 6980.
    9. 9)
      • 20. Güntürkün, U.: ‘Bivariate empirical mode decomposition for cognitive radar scene analysis’, IEEE Signal Process. Lett., 2015, 22, (5), pp. 603607.
    10. 10)
      • 9. Ahrabian, A., Rehman, N.U., Mandic, D.P.: ‘Bivariate empirical mode decomposition for unbalanced real-world signals’, IEEE Signal Process. Lett., 2013, 20, (3), pp. 245248.
    11. 11)
      • 21. Looney, D., Mandic, D.P.: ‘Multiscale image fusion using complex extensions of EMD’, IEEE Trans. Signal Process., 2009, 57, (4), pp. 16261630.
    12. 12)
      • 5. Bajaj, V., Rai, K., Kumar, A., et al: ‘Rhythm-based features for classification of focal and non-focal EEG signals’, IET Signal Process., 2017, 11, (6), pp. 743748.
    13. 13)
      • 29. Oh, B.-S., Guo, X., Wan, F., et al: ‘An EMD-based micro-Doppler signature analysis for mini-UAV blade flash reconstruction’. Proc. Int. Conf. Digital Signal Processing, London, UK, August 2017, pp. 15.
    14. 14)
      • 4. Jebaraj, J., Arumugam, R.: ‘Ensemble empirical mode decomposition-based optimised power line interference removal algorithm for electrocardiogram signal’, IET Signal Process., 2016, 10, (6), pp. 583591.
    15. 15)
      • 3. Krishna, P.K.M., Ramaswamy, K.: ‘Single channel speech separation based on empirical mode decomposition and Hilbert transform’, IET Signal Process., 2017, 11, (5), pp. 579586.
    16. 16)
      • 28. Chen, V.C., Ling, H.: ‘Time–frequency transforms for radar imaging and signal analysis’ (Artech House, USA, 2001).
    17. 17)
      • 13. Rehman, N., Mandic, D.P.: ‘Multivariate empirical mode decomposition’, Proc. R. Soc. A, 2010, 466, (2117), pp. 12911302.
    18. 18)
      • 30. Oh, B.-S., Guo, X., Wan, F., et al: ‘Micro-Doppler mini-UAV classification using empirical mode decomposition features’, IEEE Geosci. Remote Sens. Lett., 2018, 15, (2), pp. 227231.
    19. 19)
      • 19. Huang, N.E.: ‘Hilbert–Huang transform and its applications’ (World Scientific, Singapore, 2014).
    20. 20)
      • 15. Fleureau, J., Kachenoura, A., Albera, L., et al: ‘Multivariate empirical mode decomposition and application to multichannel filtering’, Signal Process., 2011, 91, (12), pp. 27832792.
    21. 21)
      • 14. Fleureau, J., Nunes, J.C., Kachenoura, A., et al: ‘Turning tangent empirical mode decomposition: a framework for mono and multivariate signals’, IEEE Trans. Signal Process., 2011, 59, (3), pp. 13091316.
    22. 22)
      • 1. Huang, N.E., Shen, Z., Long, S.R., et al: ‘The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis’, Proc. R. Soc. A, 1998, 454, (1971), pp. 903995.
    23. 23)
      • 16. Mandic, D.P., Rehman, N., Wu, Z., et al: ‘Empirical mode decomposition-based time–frequency analysis of multivariate signals: the power of adaptive data analysis’, IEEE Signal Process. Mag., 2013, 30, (6), pp. 7486.
    24. 24)
      • 25. Chappell, D.T., Hansen, J.H.L.: ‘A comparison of spectral smoothing methods for segment concatenation based speech synthesis’, Speech Commun., 2002, 36, (3), pp. 343373.
    25. 25)
      • 26. ‘MATLAB version R2017a’. Available at http://www.mathworks.com, accessed September 2018.
    26. 26)
      • 24. Niedzwiecki, M., Sethares, W.A.: ‘Smoothing of discontinuous signals: the competitive approach’, IEEE Trans. Signal Process., 1995, 43, (1), pp. 113.
    27. 27)
      • 17. Hemakom, A., Goverdovsky, V., Looney, D., et al: ‘Adaptive-projection intrinsically transformed multivariate empirical mode decomposition in cooperative brain–computer interface applications’, Philos. Trans. R. Soc. A, 2016, 374, (2065), pp. 115.
    28. 28)
      • 6. Tanaka, T., Mandic, D.P.: ‘Complex empirical mode decomposition’, IEEE Signal Process. Lett., 2007, 14, (2), pp. 101104.
    29. 29)
      • 27. ‘MATLAB source code for empirical mode decomposition’. Available at http://perso.ens-lyon.fr/patrick.flandrin/emd.html, accessed September 2018.
    30. 30)
      • 23. Boashash, B.: ‘Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications’, Proc. IEEE, 1992, 80, (4), pp. 540568.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2018.5428
Loading

Related content

content/journals/10.1049/iet-spr.2018.5428
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading