access icon free Non-adaptive space-time clutter canceller for multi-channel synthetic aperture radar

A non-adaptive space-time clutter canceller (NSCC) for multi-channel (MC) synthetic aperture radar (SAR) was proposed. First, a new three-part range equation was derived on the basis of the two-dimensional Taylor series expansion. Then, each part of the model was analysed. By compensating of the high-order coupling part and the compression of the Doppler extension part of the derived equation, the interlaced signal of a moving target and a clutter patch was easily separated in a space-time domain. The clutter signal in different pulses only contained a constant phase difference. Using radar parameters, the authors constructed a non-adaptive clutter canceller that prevented traditional space time adaptive processing (STAP) issues, such as secondary sample support, computational complexity burden, and unknown moving target information. Compared with the representative non-adaptive method, that is displaced phase centre antenna (DPCA), NSCC is robust to a small degree of parameter error. It can be applied when DPCA condition is not satisfied. The effectiveness of the proposed method was validations through simulation.

Inspec keywords: radar clutter; interference suppression; radar detection; radar antennas; radar imaging; synthetic aperture radar; space-time adaptive processing; airborne radar; radar signal processing

Other keywords: space-time domain; three-part range equation; nonadaptive space-time clutter canceller; multichannel synthetic aperture radar; Doppler extension part; nonadaptive clutter canceller; high-order coupling part; clutter patch; prevented traditional space time adaptive processing issues; clutter signal; representative nonadaptive method

Subjects: Signal processing and detection; Electromagnetic compatibility and interference; Radar equipment, systems and applications; Optical, image and video signal processing; Radar theory

References

    1. 1)
      • 22. Wang, C., Liao, G., Zhang, Q.: ‘First spaceborne SAR-GMTI experimental results for the Chinese gaofen-3 dual-channel SAR sensor’, Sensors, 2017, 17, pp. 26832708.
    2. 2)
      • 10. Chen, Z., Zhou, Y., Zhang, L., et al: ‘A robust single data set-STAP algorithm’. Proc. IET Int. Radar Conf., Hangzhou, 2015, pp. 15.
    3. 3)
      • 4. Guo, P., Tang, S., Zhang, L., et al: ‘Improved focusing approach for highly squinted beam steering SAR’, IET Radar Sonar Navig., 2016, 10, (8), pp. 13941399.
    4. 4)
      • 1. Li, Y., Wang, T.: ‘Efficient imaging algorithm for spaceborne synthetic aperture radar/ground moving target indication systems’, IET Radar Sonar Navig., 2015, 9, (9), pp. 13541359.
    5. 5)
      • 19. Li, X., Xing, M., Xia, X.G., et al: ‘Deramp space–time adaptive processing for multichannel SAR systems’, IEEE Geosci. Remote Sens. Lett., 2014, 1, (8), pp. 14481452.
    6. 6)
      • 20. Zhang, L., Wang, G., Qiao, Z., et al: ‘Azimuth motion compensation with improved subaperture algorithm for airborne SAR imaging’, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 2017, 10, (1), pp. 184193.
    7. 7)
      • 12. Da Silva, A.B.C., Baumgartner, S.V.: ‘A priori knowledge-based STAP for traffic monitoring applications: first results’. Proc. European Conf. on Synthetic Aperture Radar, Hamburg, 2016, pp. 211215.
    8. 8)
      • 14. Cumming, I.G., Wong, F.H.: ‘Digital processing of synthetic aperture radar data: algorithms and implementation’ (Artech House, Boston, MA, USA, 2005).
    9. 9)
      • 21. Zhou, F., Wu, R., Xing, M., et al: ‘Approach for single channel SAR ground moving target imaging and motion parameter estimation’, IET Radar Sonar Navig.., 2007, 1, (1), pp. 5966.
    10. 10)
      • 5. Huang, Y., Liao, G., Xu, J., et al: ‘GMTI and parameter estimation via time-Doppler chirp-varying approach for single-channel airborne SAR system’, IEEE Trans. Geosci. Remote Sens., 2017, 55, (8), pp. 43674383.
    11. 11)
      • 18. Yang, T., Li, Z., Suo, Z., et al: ‘Performance analysis for multichannel HRWS SAR systems based on STAP approach’, IEEE Geosci. Remote Sens. Lett., 2013, 10, (6), pp. 14091413.
    12. 12)
      • 17. Chen, Z., Zhou, Y., Zhang, L., et al: ‘Ground moving target imaging and analysis for near-space hypersonic vehicle-borne synthetic aperture radar system with squint angle’, Remote Sens., 2018, 10, (12), pp. 125.
    13. 13)
      • 3. Ward, J.: ‘Space time adaptive processing for airborne radar’. Tech. Rep. 1015, MIT Lincoln Laboratory, December 1994.
    14. 14)
      • 15. Zhang, S., Xing, M., Xia, X.G., et al: ‘A robust imaging algorithm for squint mode multi-channel high-resolution and wide-swath SAR with hybrid baseline and fluctuant terrain’, IEEE J. Sel. Top. Signal Process., 2015, 9, (8), pp. 15831598.
    15. 15)
      • 6. Wang, Y., Cao, Y., Peng, Z., et al: ‘Clutter suppression and GMTI for hypersonic vehicle borne SAR system with MIMO antenna’, IET Signal Process., 2017, 11, (8), pp. 905915.
    16. 16)
      • 8. Ender, J.H.G.: ‘Space-time processing for multichannel synthetic aperture radar’, Electron. Commun. Eng. J., 1999, 11, (1), pp. 2938.
    17. 17)
      • 23. Li, X., Feng, D., Liu, H., et al: ‘Two-dimensional pulse-to-pulse canceller of ground clutter in airborne radar’, IET Radar Sonar Navig., 2009, 3, (2), pp. 133143.
    18. 18)
      • 11. Zhu, S., Liao, G., Wang, W., et al: ‘Wideswath synthetic aperture radar ground moving targets indication with low data rate based on compressed sensing’, IET Radar Sonar Navig.., 2013, 7, (9), pp. 10271034.
    19. 19)
      • 9. Yang, X., Liu, Y., Long, T.: ‘Robust non-homogeneity detection algorithm based on prolate spheroidal wave functions for space-time adaptive processing’, IET Radar Sonar Navig., 2013, 7, (1), pp. 4754.
    20. 20)
      • 7. Li, J., Huang, Y., Liao, G., et al: ‘Moving target detection via efficient ATI-GoDec approach for multichannel SAR system’, IEEE Geosci. Remote Sens. Lett., 2016, 13, (9), pp. 13201324.
    21. 21)
      • 16. Tang, S., Lin, C., Zhou, Y., et al: ‘Processing of long integration time spaceborne SAR data with curved orbit’, IEEE Trans. Geosci. Remote Sens., 2018, 56, (2), pp. 888904.
    22. 22)
      • 13. Maori, D.C., Sikaneta, I.: ‘A generalization of DPCA processing for multichannel SAR/GMTI radars’, IEEE Trans. Geosci. Remote Sens., 2013, 51, (1), pp. 560572.
    23. 23)
      • 2. Baumgartner, S.V., Krieger, G.: ‘Simultaneous high-resolution wide-swath SAR imaging and ground moving target indication: processing approaches and system concepts’, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2015, 8, (11), pp. 50155029.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2018.5418
Loading

Related content

content/journals/10.1049/iet-spr.2018.5418
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading