http://iet.metastore.ingenta.com
1887

Non-adaptive space-time clutter canceller for multi-channel synthetic aperture radar

Non-adaptive space-time clutter canceller for multi-channel synthetic aperture radar

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A non-adaptive space-time clutter canceller (NSCC) for multi-channel (MC) synthetic aperture radar (SAR) was proposed. First, a new three-part range equation was derived on the basis of the two-dimensional Taylor series expansion. Then, each part of the model was analysed. By compensating of the high-order coupling part and the compression of the Doppler extension part of the derived equation, the interlaced signal of a moving target and a clutter patch was easily separated in a space-time domain. The clutter signal in different pulses only contained a constant phase difference. Using radar parameters, the authors constructed a non-adaptive clutter canceller that prevented traditional space time adaptive processing (STAP) issues, such as secondary sample support, computational complexity burden, and unknown moving target information. Compared with the representative non-adaptive method, that is displaced phase centre antenna (DPCA), NSCC is robust to a small degree of parameter error. It can be applied when DPCA condition is not satisfied. The effectiveness of the proposed method was validations through simulation.

References

    1. 1)
      • 1. Li, Y., Wang, T.: ‘Efficient imaging algorithm for spaceborne synthetic aperture radar/ground moving target indication systems’, IET Radar Sonar Navig., 2015, 9, (9), pp. 13541359.
    2. 2)
      • 2. Baumgartner, S.V., Krieger, G.: ‘Simultaneous high-resolution wide-swath SAR imaging and ground moving target indication: processing approaches and system concepts’, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2015, 8, (11), pp. 50155029.
    3. 3)
      • 3. Ward, J.: ‘Space time adaptive processing for airborne radar’. Tech. Rep. 1015, MIT Lincoln Laboratory, December 1994.
    4. 4)
      • 4. Guo, P., Tang, S., Zhang, L., et al: ‘Improved focusing approach for highly squinted beam steering SAR’, IET Radar Sonar Navig., 2016, 10, (8), pp. 13941399.
    5. 5)
      • 5. Huang, Y., Liao, G., Xu, J., et al: ‘GMTI and parameter estimation via time-Doppler chirp-varying approach for single-channel airborne SAR system’, IEEE Trans. Geosci. Remote Sens., 2017, 55, (8), pp. 43674383.
    6. 6)
      • 6. Wang, Y., Cao, Y., Peng, Z., et al: ‘Clutter suppression and GMTI for hypersonic vehicle borne SAR system with MIMO antenna’, IET Signal Process., 2017, 11, (8), pp. 905915.
    7. 7)
      • 7. Li, J., Huang, Y., Liao, G., et al: ‘Moving target detection via efficient ATI-GoDec approach for multichannel SAR system’, IEEE Geosci. Remote Sens. Lett., 2016, 13, (9), pp. 13201324.
    8. 8)
      • 8. Ender, J.H.G.: ‘Space-time processing for multichannel synthetic aperture radar’, Electron. Commun. Eng. J., 1999, 11, (1), pp. 2938.
    9. 9)
      • 9. Yang, X., Liu, Y., Long, T.: ‘Robust non-homogeneity detection algorithm based on prolate spheroidal wave functions for space-time adaptive processing’, IET Radar Sonar Navig., 2013, 7, (1), pp. 4754.
    10. 10)
      • 10. Chen, Z., Zhou, Y., Zhang, L., et al: ‘A robust single data set-STAP algorithm’. Proc. IET Int. Radar Conf., Hangzhou, 2015, pp. 15.
    11. 11)
      • 11. Zhu, S., Liao, G., Wang, W., et al: ‘Wideswath synthetic aperture radar ground moving targets indication with low data rate based on compressed sensing’, IET Radar Sonar Navig.., 2013, 7, (9), pp. 10271034.
    12. 12)
      • 12. Da Silva, A.B.C., Baumgartner, S.V.: ‘A priori knowledge-based STAP for traffic monitoring applications: first results’. Proc. European Conf. on Synthetic Aperture Radar, Hamburg, 2016, pp. 211215.
    13. 13)
      • 13. Maori, D.C., Sikaneta, I.: ‘A generalization of DPCA processing for multichannel SAR/GMTI radars’, IEEE Trans. Geosci. Remote Sens., 2013, 51, (1), pp. 560572.
    14. 14)
      • 14. Cumming, I.G., Wong, F.H.: ‘Digital processing of synthetic aperture radar data: algorithms and implementation’ (Artech House, Boston, MA, USA, 2005).
    15. 15)
      • 15. Zhang, S., Xing, M., Xia, X.G., et al: ‘A robust imaging algorithm for squint mode multi-channel high-resolution and wide-swath SAR with hybrid baseline and fluctuant terrain’, IEEE J. Sel. Top. Signal Process., 2015, 9, (8), pp. 15831598.
    16. 16)
      • 16. Tang, S., Lin, C., Zhou, Y., et al: ‘Processing of long integration time spaceborne SAR data with curved orbit’, IEEE Trans. Geosci. Remote Sens., 2018, 56, (2), pp. 888904.
    17. 17)
      • 17. Chen, Z., Zhou, Y., Zhang, L., et al: ‘Ground moving target imaging and analysis for near-space hypersonic vehicle-borne synthetic aperture radar system with squint angle’, Remote Sens., 2018, 10, (12), pp. 125.
    18. 18)
      • 18. Yang, T., Li, Z., Suo, Z., et al: ‘Performance analysis for multichannel HRWS SAR systems based on STAP approach’, IEEE Geosci. Remote Sens. Lett., 2013, 10, (6), pp. 14091413.
    19. 19)
      • 19. Li, X., Xing, M., Xia, X.G., et al: ‘Deramp space–time adaptive processing for multichannel SAR systems’, IEEE Geosci. Remote Sens. Lett., 2014, 1, (8), pp. 14481452.
    20. 20)
      • 20. Zhang, L., Wang, G., Qiao, Z., et al: ‘Azimuth motion compensation with improved subaperture algorithm for airborne SAR imaging’, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 2017, 10, (1), pp. 184193.
    21. 21)
      • 21. Zhou, F., Wu, R., Xing, M., et al: ‘Approach for single channel SAR ground moving target imaging and motion parameter estimation’, IET Radar Sonar Navig.., 2007, 1, (1), pp. 5966.
    22. 22)
      • 22. Wang, C., Liao, G., Zhang, Q.: ‘First spaceborne SAR-GMTI experimental results for the Chinese gaofen-3 dual-channel SAR sensor’, Sensors, 2017, 17, pp. 26832708.
    23. 23)
      • 23. Li, X., Feng, D., Liu, H., et al: ‘Two-dimensional pulse-to-pulse canceller of ground clutter in airborne radar’, IET Radar Sonar Navig., 2009, 3, (2), pp. 133143.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2018.5418
Loading

Related content

content/journals/10.1049/iet-spr.2018.5418
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address