© The Institution of Engineering and Technology
Adaptive beamforming methods are sensitive to underlying assumptions on the environment, sources, or sensor array violation, especially when interferences are moving fast. In this study, the nonstationary interference source is estimated during the period in which snapshots are taken. Then, a new interferenceplusnoise covariance matrix reconstruction is introduced which is derived from a simplified power spectral density function that can be used to shape the directional response of the beamformer. Finally, the beamformer is designed to impose nulls towards the regions of the moving interference based on the reconstructed covariance matrix. The essence of the proposed method is to express the inverse of the reconstructed covariance matrix which needs less computational complexity calculation. The effectiveness of the proposed method is demonstrated by numerical results.
References


1)

1. Li, J., Stoica, P.: ‘Robust adaptive Beamforming’ (Wiley, New York, 2005).

2)

2. Vorobyov, S.A.: ‘Principles of minimum variance robust adaptive beamforming design’, Signal Process., 2013, 93, pp. 3264–3277.

3)

3. Zhuang, J., Manikas, A.: ‘Interference cancellation beamforming robust to pointing errors’, IET Signal Process., 2013, 7, (2), pp. 120–127.

4)

4. Vorobyov, S.A., Gershman, A.B., Luo, Z.Q.: ‘Robust adaptive beamforming using worstcase performance optimization: A solution to the signal mismatch problem’, IEEE Trans. Signal Process., 2003, 51, (2), pp. 313–324.

5)

5. Gu, Y., Leshem, A.: ‘Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation’, IEEE Trans. Signal Process., 2012, 60, (7), pp. 3881–3885.

6)

6. Gu, Y., Goodman, N.A., Hong, S., et al: ‘Robust adaptive beamforming based on interference covariance matrix sparse reconstruction’, Signal Process., 2014, 96, pp. 375–381.

7)

7. Zhou, C., Gu, Y., He, S., et al: ‘A robust and efficient algorithm for coprime array adaptive beamforming ‘, IEEE trans.Veh. Technol., 2018, 67, (2), pp. 1099–1112.

8)

8. Mohammadzadeh, S., Kukrer, O.: ‘Adaptive beamforming based on theoretical interferenceplusnoise covariance and directionofarrival estimation’, IET Signal Process., 2018, 12, (7), pp. 819–825.

9)

9. Mohammadzadeh, S., Kukrer, O.: ‘Modified robust capon beamforming with approximate orthogonal projection onto the signalplusinterference subspace’, Circuits Syst. Signal Process., 2018, 37, (12), pp. 5351–5368.

10)

10. Van Trees, H.: ‘Detection, estimation, and modulation theory – part IV optimum array process’ (Wiley, New York, 2002).

11)

11. Kukrer, O., Mohammadzadeh, S.: ‘Generalised loading algorithm for adaptive beamforming in ULAs’, IET Signal Process., 2014, 50, (13), pp. 910–912.

12)

12. Mailloux, R.J.: ‘Covariance matrix augmentation to produce adaptive array pattern troughs’, IET Electron. Lett., 1995, 31, (10), pp. 771–772.

13)

13. Guerci, J.R.: ‘Theory and application of covariance matrix tapers for robust adaptive beamforming’, IEEE Trans. Signal Process., 1999, 47, (4), pp. 977–985.

14)

14. Liu, F.L., Wang, C.Y., Du, R.Y.: ‘Robust MVDR beamformer for nulling level control via multiparametric quadratic programming’, Prog. Electromagn. Res., 2011, 20, (20), pp. 239–254.

15)

15. Qian, J., He, Z., Xie, J.: ‘Null broadening adaptive beamforming based on covariance matrix reconstruction and similarity constraint’, EURASIP J. Adv. Signal Process., 2017, 2017, (1), pp. 1–10.

16)

16. Jeffs, B.D., Warnick, K.F.: ‘Bias corrected PSD estimation for an adaptive array with moving interference’, IEEE Trans. Signal Process., 2008, 56, (7), pp. 3108–3121.

17)

17. Liu, F.L., Chen, P.P., Wang, J.K., et al: ‘Null broadening and sidelobe control method based on multiparametric quadratic programming’, J. Northeas Univ., 2012, 33, (1), pp. 1559–1562.

18)

18. Gershman, A.B., Nickel, U., Bohme, J.F.: ‘Adaptive beamforming algorithms with robustness against jammer motion’, IEEE Trans. Signal Process., 1997, 45, (7), pp. 1878–1885.

19)

19. Gershman, A.B., Serebryakov, G.V., Bohme, J.F.: ‘Constrained HungTurner adaptive beamforming algorithm with additional robustness to wideband and moving jammers’, IEEE Trans. Signal Process., 1996, 44, (3), pp. 361–367.

20)

20. Amar, A., Doron, M.A.: ‘A linearly constrained minimum variance beamformer with a prespecified suppression level over a predefined broad null sector’, Signal Process., 2015, 109, pp. 165–171.

21)

21. Riba, J., Goldberg, J., Vazquez, G.: ‘Robust beamforming for interference rejection in mobile communications’, IEEE Trans. Signal Process., 1997, 45, (1), pp. 271–275.

22)

22. Zatman, M.: ‘Production of adaptive array troughs by dispersion synthesis’, IET Electron. Lett., 1995, 31, (25), pp. 2141–2142.

23)

23. Zhang, L., Li, B., Huang, L., et al: ‘Robust minimum dispersion distortionless response beamforming against fastmoving interferences’, Signal Process., 2017, 140, pp. 190–197.

24)

24. Mao, X., Li, W., Li, Y., et al: ‘Robust adaptive beamforming against signal steering vector mismatch and jammer motion’, Int. J. Antennas. Propag., 2015, .

25)

25. Chen, F., Shen, F., Song, J.: ‘Robust adaptive beamforming using lowcomplexity correlation coefficient calculation algorithms’, IET Electron. Lett., 2015, 51, (6), pp. 443–445.

26)

26. Huang, L., Zhang, J., Xu, X., et al: ‘Robust adaptive beamforming with a novel interferenceplusnoise covariance matrix reconstruction method’, IEEE Trans. Signal Process., 2015, 63, (7), pp. 1643–1650.

27)

27. Goldberg, J., Messer, H.: ‘Inherent limitations in the localization of a coherently scattered source’, IEEE Trans. Signal Process., 1998, 46, (12), pp. 3441–3444.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietspr.2018.5264
Related content
content/journals/10.1049/ietspr.2018.5264
pub_keyword,iet_inspecKeyword,pub_concept
6
6