http://iet.metastore.ingenta.com
1887

Automated QRS complex detection using MFO-based DFOD

Automated QRS complex detection using MFO-based DFOD

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a heuristic approach for designing highly efficient, infinite impulse response (IIR) type Digital First-Order Differentiator (DFOD) by employing a nature-inspired evolutionary algorithm called Moth-Flame Optimisation (MFO) for the detection of the QRS complexes in the electrocardiogram (ECG) signal. The designed DFOD is used in the pre-processing stage of the proposed QRS complex detector, to generate feature signals corresponding to each R-peak by efficiently differentiating the ECG signal. The generated feature signal is employed to detect the precise instants of the R-peaks by using a Hilbert transform-based R-peak detection logic. The performance efficiency of the proposed QRS complex detector is evaluated by using all the first channel records of the MIT/BIH arrhythmia database (MBDB), regarding the standard performance evaluation metrics. The proposed approach has resulted in Sensitivity (Se) of 99.93%, Positive Predictivity (PP) of 99.92%, Detection Error Rate (DER) of 0.15%, and QRS Detection Rate (QDR) of 99.92%. Performance comparison with the recent works justifies the superiority of the proposed approach.

References

    1. 1)
      • 1. Meidani, M., Mashoufi, B.: ‘Introducing new algorithms for realizing an FIR filter with less hardware to eliminate power line interference from the ECG signal’, IET Signal Process., 2016, 10, (7), pp. 709716.
    2. 2)
      • 2. Yadav, S.K., Sinha, R., Bora, P.K.: ‘Electrocardiogram signal denoising using non-local wavelet transform domain filtering’, IET Signal Process., 2015, 9, (1), pp. 8896.
    3. 3)
      • 3. Friesen, G.M., Jannett, T.C., Jadallah, M.A., et al: ‘A comparison of the noise sensitivity of nine QRS detection algorithms’, IEEE Trans. Biomed. Eng., 1990, 37, (1), pp. 8598.
    4. 4)
      • 4. Kohler, B.U., Hennig, C., Orglmeister, R.: ‘The principles of software QRS detection’, IEEE Eng. Med. Biol. Mag., 2002, 21, (1), pp. 4257.
    5. 5)
      • 5. Min, Y. J., Kim, H. K., Kang, Y.R., et al: ‘Design of wavelet-based ECG detector for implantable cardiac pacemakers’, IEEE Trans. Biomed. Circuits Syst., 2013, 7, (4), pp. 426436.
    6. 6)
      • 6. Leong, C.I., Mak, P.I., Lam, C.P., et al: ‘A 0.83 - µW QRS detection processor using quadratic spline wavelet transform for wireless ECG acquisition in 0.35 - µm CMOS’, IEEE Trans. Biomed. Circuits Syst., 2012, 6, (6), pp. 586595.
    7. 7)
      • 7. Rakshit, M., Das, S.: ‘An efficient wavelet-based automated R-peaks detection method using Hilbert transform’, Biocybern. Biomed. Eng., 2017, 37, (3), pp. 566577.
    8. 8)
      • 8. Bouaziz, F., Boutana, D., Benidir, M.: ‘Multiresolution wavelet-based QRS complex detection algorithm suited to several abnormal morphologies’, IET Signal Process., 2014, 8, (7), pp. 774782.
    9. 9)
      • 9. Zidelmal, Z., Amirou, A., Adnane, M., et al: ‘QRS detection based on wavelet coefficients’, Comput. Methods Programs Biomed., 2012, 107, (3), pp. 490496.
    10. 10)
      • 10. Deepu, C.J., Lian, Y.: ‘A joint QRS detection and data compression scheme for wearable sensors’, IEEE Trans. Biomed. Eng., 2015, 62, (1), pp. 165175.
    11. 11)
      • 11. Jain, S., Kumar, A., Bajaj, V.: ‘Techniques for QRS complex detection using particle swarm optimization’, IET Sci. Meas. Technol., 2016, 10, (6), pp. 626636.
    12. 12)
      • 12. Slimane, Z.E.H., Nait-Ali, A.: ‘QRS complex detection using empirical mode decomposition’, Digit. Signal Process., 2010, 20, pp. 12211228.
    13. 13)
      • 13. Dohare, A.K., Kumar, V., Kumar, R.: ‘An efficient new method for the detection of QRS in electrocardiogram’, Comput. Electr. Eng., 2014, 40, (5), pp. 17171730.
    14. 14)
      • 14. Afonso, V.X., Tompkins, W.J., Nguyen, T.Q., et al: ‘ECG beat detection using filter banks’, IEEE Trans. Biomed. Eng., 1999, 46, (2), pp. 192201.
    15. 15)
      • 15. Phukpattaranont, P.: ‘QRS detection algorithm based on the quadratic filter’, Expert Syst. Appl., 2015, 42, (11), pp. 48674877.
    16. 16)
      • 16. Yazdani, S., Vesin, J.M.: ‘Extraction of QRS fiducial points from the ECG using adaptive mathematical morphology’, Digit. Signal Process., 2016, 56, pp. 100109.
    17. 17)
      • 17. Zhang, F., Lian, Y.: ‘QRS detection based on multiscale mathematical morphology for wearable ECG devices in body area networks’, IEEE Trans. Biomed. Circuits Syst., 2009, 3, (4), pp. 220228.
    18. 18)
      • 18. Arbateni, K., Bennia, A.: ‘Sigmoidal radial basis function ANN for QRS complex detection’, Neurocomputing, 2014, 145, (5), pp. 438450.
    19. 19)
      • 19. Nallathambi, G., Príncipe, J.C.: ‘Integrate and fire pulse train automaton for QRS detection’, IEEE Trans. Biomed. Eng., 2014, 61, (2), pp. 317326.
    20. 20)
      • 20. Ravanshad, N., Dehsorkh, H.R., Lotfi, R., et al: ‘A level-crossing based QRS-detection algorithm for wearable ECG sensors’, IEEE. J. Biomed. Health. Inform., 2014, 18, (1), pp. 183192.
    21. 21)
      • 21. Ning, X., Selesnick, I.W.: ‘ECG enhancement and QRS detection based on sparse derivative’, Biomed. Signal Proc. Control, 2013, 8, pp. 713723.
    22. 22)
      • 22. Ramakrishnan, A.G., Prathosh, A.P., Ananthapadmanabha, T.V.: ‘Threshold-independent QRS detection using the dynamic plosion index’, IEEE Signal Process. Lett., 2014, 21, (5), pp. 554558.
    23. 23)
      • 23. Pandit, D., Zhang, L., Liu, C., et al: ‘A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm’, Comput. Methods Programs Biomed., 2017, 144, pp. 6175.
    24. 24)
      • 24. Sharma, T., Sharma, K.K.: ‘QRS complex detection in ECG signals using locally adaptive weighted total variation denoising’, Comput. Biol. Med., 2017, 87, pp. 187199.
    25. 25)
      • 25. Castells-Rufas, D., Carrabina, J.: ‘Simple and real-time QRS detector with the MaMeMi filter’, Biomed. Signal Proc. Control, 2015, 21, pp. 137145.
    26. 26)
      • 26. Pan, J., Tompkins, W.J.: ‘A real-time QRS detection algorithm’, IEEE Trans. Biomed. Eng., 1985, 32, (3), pp. 230236.
    27. 27)
      • 27. Arzeno, N.M., Deng, Z.D., Poon, C.S.: ‘Analysis of first-derivative based QRS detection algorithms’, IEEE Trans. Biomed. Eng., 2008, 55, (2), pp. 478484.
    28. 28)
      • 28. Manikandan, M.S., Soman, K.P.: ‘A novel method for detecting R-peaks in electrocardiogram (ECG) signal’, Biomed. Signal. Process. Control., 2012, 7, (2), pp. 118128.
    29. 29)
      • 29. Hamilton, P.S., Tompkins, W.J.: ‘Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database’, IEEE Trans. Biomed. Eng., 1986, 33, (12), pp. 11571164.
    30. 30)
      • 30. Sabherwal, P., Agrawal, M., Singh, L.: ‘Automatic detection of the R peaks in single-lead ECG signal’, Circuits Syst. Signal Process., 2017, 36, (11), pp. 46374652. doi: 10.1007/s00034-017-0537-2.
    31. 31)
      • 31. Benmalek, M., Charef, A.: ‘Digital fractional order operators for R-wave detection in electrocardiogram signal’, IET Signal Process., 2008, 3, (5), pp. 381391.
    32. 32)
      • 32. Saha, S.K., Kar, R., Mandal, D., et al: ‘Seeker optimization algorithm: application to the design of linear phase finite impulse response filter’, IET Signal Process., 2012, 6, (8), pp. 763771.
    33. 33)
      • 33. Mahata, S., Saha, S.K., Kar, R., et al: ‘Optimal design of wideband digital integrators and differentiators using harmony search algorithm’, Int. J. Numer. Model., Electron. Netw. Devices Fields, 2017, 30, p. e2203. doi: 10.1002/jnm.2203.
    34. 34)
      • 34. Mitra, S.K.: ‘Digital signal processing’ (McGraw-Hill, New York, 2006, 3rd edn.).
    35. 35)
      • 35. Mahata, S., Saha, S.K., Kar, R., et al: ‘Optimal and accurate design of fractional order digital differentiator – an evolutionary approach’, IET Signal Process., 2017, 11, (2), pp. 181196.
    36. 36)
      • 36. Al-Alaoui, M.A.: ‘Novel IIR differentiator from the Simpson integration rule’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 1994, 41, (2), pp. 186187.
    37. 37)
      • 37. Al-Alaoui, M.A.: ‘Class of digital integrators and differentiators’, IET Signal Process., 2010, 5, (2), pp. 251260.
    38. 38)
      • 38. Mahata, S., Saha, S.K., Kar, R., et al: ‘Optimal design of wideband IIR fractional order digital integrators using colliding bodies optimization algorithm’, IET Signal Process., 2016, 10, (9), pp. 11351156.
    39. 39)
      • 39. Gupta, M., Relan, B., Yadav, R., et al: ‘Wideband digital integrators and differentiators designed using particle swarm optimization’, IET Signal Process., 2014, 8, (6), pp. 668679.
    40. 40)
      • 40. Mahata, S., Saha, S.K., Kar, R., et al: ‘Optimal design of wideband digital integrators and differentiators using hybrid flower pollination algorithm’, Soft Comput., 2017, 22, (11), pp. 37573783. doi: 10.1007/s00500-017-2595-6.
    41. 41)
      • 41. Mirjalili, S.: ‘Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm’, Knowl.-Based Syst., 2015, 89, pp. 228249.
    42. 42)
      • 42. Goldberger, A.L., Amaral, L.A.N., Glass, L., et al: ‘Physiobank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals’, Circulation, 2000, 101, (23), pp. e215e220.
    43. 43)
      • 43. Moody, G.B., Mark, R.G.: ‘The impact of MIT-BIH arrhythmia database’, IEEE Eng. Med. Biol. Mag., 2001, 20, (3), pp. 4550.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2018.5230
Loading

Related content

content/journals/10.1049/iet-spr.2018.5230
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address