http://iet.metastore.ingenta.com
1887

Ground moving target focusing and motion parameter estimation method via MSOKT for synthetic aperture radar

Ground moving target focusing and motion parameter estimation method via MSOKT for synthetic aperture radar

For access to this article, please select a purchase option:

Buy eFirst article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a ground moving target focusing and motion parameter estimation method based on modified second-order keystone transform (MSOKT) have been proposed for a synthetic aperture radar. Firstly, a cross-track velocity matching compensation function is derived to remove range walk migration and estimate the cross-track velocity of the moving target. Secondly, an MSOKT is proposed to remove the range curvature and Doppler frequency migration simultaneously. Lastly, a well-focused result of the moving target is obtained, and the motion parameters of the moving target are estimated. Compared with the traditional KT-based method, the proposed method works well in situations where Doppler centre blur and Doppler spectrum ambiguity are present. The computational complexity of the proposed method is considerably lower than that of the traditional optimum method, such as Radon-Lv's distribution. Simulation and real data processing results validate the effectiveness of the proposed method.

References

    1. 1)
      • 1. Cumming, I.G., Wong, F.H.: ‘Digital processing of synthetic aperture radar data: algorithms and implementation’ (Artech House, Norwood, MA, USA, 2005).
    2. 2)
      • 2. Moreira, A., Iraola, P.P., Younis, M., et al: ‘A tutorial on synthetic aperture radar’, IEEE Geosci. Remote Sens. Mag., 2013, 1, (1), pp. 643.
    3. 3)
      • 3. Martorella, M., Pastina, D., Berizzi, F., et al: ‘Spaceborne radar imaging of maritime moving targets with the Cosmo-SkyMed SAR system’, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 2014, 7, (7), pp. 27972810.
    4. 4)
      • 4. Yang, J.: ‘Study on ground moving target indication and imaging technique of airborne SAR’. PhD thesis, Chinese Academy of Sciences, 2016.
    5. 5)
      • 5. Wang, Y., Cao, Y.H., Peng, Z.G., et al: ‘Clutter suppression and GMTI for hypersonic vehicle borne SAR system with MIMO antenna’, IET Signal Process.., 2017, 11, (8), pp. 909915.
    6. 6)
      • 6. Oveis, A.H., Sebt, M.A.: ‘Coherent method for ground-moving target indication and velocity estimation using Hough transform’, IET Radar Sonar Navig.., 2017, 11, (4), pp. 646655.
    7. 7)
      • 7. Chen, Z.Y., Wang, T.: ‘Unambiguous across-track velocity estimation of moving targets for multichannel synthetic aperture radar-ground moving target indication systems’, IET Signal Process.., 2014, 8, (9), pp. 950957.
    8. 8)
      • 8. Delphine, C.M., Jens, K., Andreas, R.B., et al: ‘Wide-area traffic monitoring with the SAR/GMTI system PAMIR’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (10), pp. 30193030.
    9. 9)
      • 9. Huang, P.H., Xia, X.G., Liu, X.Z., et al: ‘Refocusing and motion parameter estimation for ground moving targets based on improved axis rotation-time reversal transform’, IEEE Trans. Comput. Imag., 2018, 4, (3), pp. 479494.
    10. 10)
      • 10. Yu, W.C., Su, W.M., Gu, H.: ‘Ground maneuvering target detection based on discrete polynomial-phase transform and Lv's distribution’, Signal Process.., 2018, 144, pp. 364372.
    11. 11)
      • 11. Perry, R.P., Dipietro, R.C., Fante, R.L.: ‘SAR imaging of moving targets’, IEEE Trans. Aerosp. Electron. Syst., 1999, 35, (1), pp. 188200.
    12. 12)
      • 12. Zhu, D.Y., Li, Y., Zhu, Z.D.: ‘A keystone transform without interpolation for SAR ground moving-target imaging’, IEEE Geosci. Remote Sens. Lett., 2007, 4, (1), pp. 1822.
    13. 13)
      • 13. Zhou, F., Wu, R., Xing, M., et al: ‘Approach for single channel SAR ground moving target imaging and motion parameter estimation’, IET Radar Sonar Navig.., 2007, 1, (1), pp. 5966.
    14. 14)
      • 14. Kirkland, D.: ‘Imaging moving targets using the second-order keystone transform’, IET Radar Sonar Navig.., 2011, 5, (8), pp. 902910.
    15. 15)
      • 15. Li, G., Xia, X.G., Peng, Y.N.: ‘Doppler keystone transform: an approach suitable for parallel implementation of SAR moving target imaging’, IEEE Geosci. Remote Sens. Lett., 2008, 5, (4), pp. 573577.
    16. 16)
      • 16. Huang, P.H., Liao, G.S., Yang, Z.W., et al: ‘An approach for refocusing of ground moving target without target motion parameter estimation’, IEEE Trans. Geosci. Remote Sens., 2017, 55, (1), pp. 336350.
    17. 17)
      • 17. Tian, J., Cui, W., Xia, X.G., et al: ‘Parameter estimation of ground moving targets based on SKT-DLVT processing’, IEEE Trans. Comput. Imag., 2016, 2, (1), pp. 1326.
    18. 18)
      • 18. Sun, G.C., Xing, M.D., Xia, X.G., et al: ‘Robust ground moving-target imaging using deramp–keystone processing’, IEEE Trans. Geosci. Remote Sens., 2013, 51, (2), pp. 966982.
    19. 19)
      • 19. Xin, Z.H., Liao, G.S., Yang, Z.W., et al: ‘A fast ground moving target focusing method based on first-order discrete polynomial-phase transform’, Digital Signal Process., 2017, 60, pp. 287295.
    20. 20)
      • 20. Peleg, S., Friedlander, B.: ‘The discrete polynomial-phase transform’, IEEE Trans. Signal Process., 1995, 43, (8), pp. 19011914.
    21. 21)
      • 21. Li, X.L., Cui, G.L., Yi, W., et al: ‘Coherent integration for maneuvering target detection based on Radon-Lv's distribution’, IEEE Signal Process. Lett., 2015, 22, (9), pp. 14671471.
    22. 22)
      • 22. Barbarossa, S., Lorenzo, P.D., Vecchiarelli, P.: ‘Parameter estimation of 2D multi-component polynomial phase signals: an application to SAR imaging of moving targets’, IEEE Trans. Signal Process., 2014, 62, (17), pp. 43754389.
    23. 23)
      • 23. Richards, M.A.: ‘Fundamentals of radar signal processing’ (McGraw-Hill, New York, NY, USA, 2005).
    24. 24)
      • 24. Liu, Q.H., Nguyen, N.: ‘An accurate algorithm for nonuniform fast Fourier transforms (NUFFT's)’, IEEE Microw. Guided Wave Lett., 1998, 8, (1), pp. 1820.
    25. 25)
      • 25. Liu, Q.H., Nguyen, N., Tang, X.Y.: ‘Accurate algorithms for nonuniform fast forward and inverse Fourier transforms and their applications’. Proc. IEEE Geoscience Remote Sensing Symp., Seattle, USA, July 1998, pp. 288290.
    26. 26)
      • 26. Song, J.Y., Liu, Q.H., Torrione, P., et al: ‘Two-dimensional and three-dimensional NUFFT migration method for landmine detection using ground-penetrating radar’, IEEE Trans. Geosci. Remote Sens., 2006, 44, (6), pp. 14621469.
    27. 27)
      • 27. Luo, S., Bi, G.A., Lv, X.L., et al: ‘Performance analysis on Lv distribution and its applications’, Digit. Signal Process., 2013, 23, pp. 797807.
    28. 28)
      • 28. Misiurewicz, J., Kulpa, K.S., Czekala, Z., et al: ‘Radar detection of helicopters with application of CNEAN method’, IEEE Trans. Aerosp. Electron. Syst., 2012, 48, (4), pp. 35253537.
    29. 29)
      • 29. Li, X.L., Kong, L.J., Cui, G.L., et al: ‘CLEAN-based coherent integration method for high-speed multi-targets detection’, IET Radar Sonar Navig.., 2016, 10, (9), pp. 16711682.
    30. 30)
      • 30. Yu, W.C., Su, W.M., Gu, H.: ‘Ground moving target motion parameter estimation using radon modified Lv's distribution’, Digit. Signal Process., 2017, 69, pp. 212223.
    31. 31)
      • 31. Chen, Z.Y., Zhou, Y., Zhang, L.R., et al: ‘Ground moving target imaging and analysis for near-space hypersonic vehicle-borne synthetic aperture radar system with squint angle’, Remote Sens.., 2018, 10, (12), pp. 125.
    32. 32)
      • 32. Baumgartner, S.V., Krieger, G.: ‘Fast GMTI algorithm for traffic monitoring based on a priori knowledge’, IEEE Trans. Geosci. Remote Sens., 2012, 50, (11), pp. 46264641.
    33. 33)
      • 33. Guerci, J.R., Baranoski, E.J.: ‘Knowledge-aided adaptive radar at DARPA: an overview’, IEEE Signal Process. Mag., 2006, 23, (1), pp. 4150.
    34. 34)
      • 34. Maori, D.C., Sikaneta, I.: ‘A generalization of DPCA processing for multichannel SAR/GMTI radars’, IEEE Trans. Geosci. Remote Sens., 2013, 51, (1), pp. 560572.
    35. 35)
      • 35. Klemn, R.: ‘Introduction to space-time adaptive processing’, Electron. Commun. Eng. J., 1999, 11, (1), pp. 512.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2018.5225
Loading

Related content

content/journals/10.1049/iet-spr.2018.5225
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address