© The Institution of Engineering and Technology
This study investigates the problem of low probability of intercept (LPI)based distributed multipleinput multipleoutput (MIMO) radar waveform design against barrage jamming in signaldependent clutter and coloured noise. Given the priori knowledge of the extended target impulse response, signaldependent clutter, barrage jamming signals and coloured noise, the LPIbased scheme for optimal radar waveform design is proposed to minimise the total power consumption of the MIMO radar system by optimising the transmitted waveforms of different transmitters with a predetermined mutual information (MI) constraint for target characterisation performance. Firstly, the MI between the received echoes from the target at each receiver and the target impulse response is derived as a practical metric to characterise the parameter estimation performance of a target. Then, the LPIbased distributed MIMO radar waveform design strategy is developed. The resulting radar waveform optimisation problem is convex and solved analytically, whose solutions represent the optimum power allocation for each transmitter in the MIMO radar system. With the aid of numerical simulations, it is illustrated that to minimise the total transmission power, the optimal waveform should match with the target, clutter, jamming and coloured noise. In addition, it is also demonstrated that the LPI performance of the MIMO radar system can be significantly improved by employing the proposed radar waveform design scheme.
References


1)

1. Fisher, E., Haimovich, A., Blum, R.S., et al: ‘Spatial diversity in radarmodels and detection performance’, IEEE Trans. Signal Process., 2006, 54, (3), pp. 823–836.

2)

2. Zhou, C.W., Gu, Y.J., He, S.B., et al: ‘A robust and efficient algorithm for coprime array adaptive beamforming’, IEEE Trans. Veh. Technol., 2018, 67, (2), pp. 1099–1112.

3)

3. Zhou, C.W., Gu, Y.J., Zhang, Y.D., et al: ‘Compressive sensing based coprime array directionofarrival estimation’, IET Commun., 2017, 11, (11), pp. 1719–1724.

4)

4. Tang, B., Tang, J., Peng, Y.N.: ‘MIMO radar waveform design in colored noise based on information theory’, IEEE Trans. Signal Process., 2010, 58, (9), pp. 4684–4697.

5)

5. Yan, J.K., Jiu, B., Liu, H.W., et al: ‘Prior knowledge based simultaneous multibeam power allocation algorithm for cognitive multiple targets tracking in clutter’, IEEE Trans. Signal Process., 2015, 63, (2), pp. 512–527.

6)

6. Yan, J.K., Liu, H.W., Jiu, B., et al: ‘Simultaneous multibeam resource allocation scheme for multiple target tracking’, IEEE Trans. Signal Process., 2015, 63, (12), pp. 3110–3122.

7)

7. Wang, L.L., Wang, L.D., Zeng, Y.H., et al: ‘Jamming power allocation strategy for MIMO radar based on MMSE and mutual information’, IET Radar Sonar Navig., 2017, 11, (7), pp. 1081–1089.

8)

8. Yan, J.K., Liu, H.W., Pu, W.Q., et al: ‘Joint beam selection and power allocation for multiple target tracking in netted colocated MIMO radar system’, IEEE Trans. Signal Process., 2016, 64, (24), pp. 6417–6427.

9)

9. Naghsh, M.M., Mahmoud, M.H., Shahram, S.P., et al: ‘Unified optimization framework for multistatic radar code design using informationtheoretic criteria’, IEEE Trans. Signal Process., 2013, 61, (21), pp. 5401–5416.

10)

10. Niu, R.X., Blum, R.S., Varshney, P.K., et al: ‘Target localization and tracking in noncoherent multipleinput multipleoutput radar systems’, IEEE Trans. Aerosp. Electron. Syst., 2010, 48, (2), pp. 1466–1487.

11)

11. Shi, C.G., Wang, F., Zhou, J.J.: ‘CramerRao bound analysis for joint target location and velocity estimation in frequency modulation based passive radar network’, IET Signal Process., 2016, 10, (7), pp. 780–790.

12)

12. Shi, C.G., Wang, F., Sellathurai, M., et al: ‘Transmitter subset selection in FMbased passive radar network for joint target parameter estimation’, IEEE Sens. J., 2016, 16, (15), pp. 6043–6052.

13)

13. Chen, Y.F., Nijsure, Y., Yuen, C., et al: ‘Adaptive distributed MIMO radar waveform optimization based on mutual information’, IEEE Trans. Aerosp. Electron. Syst., 2013, 49, (2), pp. 1374–1384.

14)

14. Jiu, B., Liu, H.W., Wang, X., et al: ‘Knowledgebased spatialtemporal hierarchical MIMO radar waveform design method for target detection in heterogeneous clutter zone’, IEEE Trans. Signal Process., 2015, 63, (3), pp. 543–554.

15)

15. Liu, H.W., Wang, X., Jiu, B., et al: ‘Wideband MIMO radar waveform design for multiple target imaging’, IEEE Sens. J., 2016, 16, (23), pp. 8545–8556.

16)

16. Daniel, A., Popescu, D.C.: ‘MIMO radar waveform design for multiple extended target estimation based on greedy SINR maximization’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, March 2016, pp. 3006–3010.

17)

17. Cheng, Z.Y., He, Z.S., Liao, B., et al: ‘MIMO radar waveform design with PAPR and similarity constraints’, IEEE Trans. Signal Process., 2018, 66, (4), pp. 968–981.

18)

18. Yang, Y., Blum, R.S.: ‘MIMO radar waveform design based on mutual information and minimum meansquare error estimation’, IEEE Trans. Aerosp. Electron. Syst., 2007, 43, (1), pp. 330–343.

19)

19. Yang, Y., Blum, R.S.: ‘Minimax robust MIMO radar waveform design’, IEEE. J. Sel. Top. Signal. Process., 2007, 1, (1), pp. 147–155.

20)

20. Naghibi, T., Behnia, F.: ‘MIMO radar waveform design in the presence of clutter’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (2), pp. 770–781.

21)

21. Chen, C.Y., Vaidyanathan, P.P.: ‘MIMO radar waveform optimization with prior information of the extended target and clutter’, IEEE Trans. Signal Process., 2009, 57, (9), pp. 3533–3544.

22)

22. Qu, J.L., Jia, X., Peng, Y.N., et al: ‘Optimal waveform design for MIMO radar detection with clutter and noise’. IEEE CIE Int. Conf. on Radar, Chengdu, China, October 2011, pp. 559–563.

23)

23. Wang, Y.X., Huang, G.C., Li, W., et al: ‘MIMO radar waveform design in the presence of clutter and colored noise’, J. Xidian Univ., 2017, 44, (4), pp. 125–131.

24)

24. Panoui, A., Lambotharan, S., Chambers, J.A.: ‘Game theoretic distributed waveform design for multistatic radar networks’, IEEE Trans. Aerosp. Electron. Syst., 2016, 52, (4), pp. 1855–1865.

25)

25. Song, X.F., Willett, P., Zhou, S.L., et al: ‘The MIMO radar and jammer games’, IEEE Trans. Signal Process., 2012, 60, (2), pp. 687–699.

26)

26. Lan, X., Li, W., Wang, X.L., et al: ‘MIMO radar and target Stackelberg game in the presence of clutter’, IEEE Sens. J., 2015, 15, (12), pp. 6912–6920.

27)

27. Han, K.Y., Nehorai, A.: ‘Joint optimal design for MIMO radar frequencyhopping waveforms using game theory’, IEEE Trans. Aerosp. Electron. Syst., 2016, 52, (2), pp. 809–820.

28)

28. Schleher, D.C.: ‘LPI radar: fact or fiction’, IEEE Aerosp. Electron. Syst. Mag., 2006, 21, (5), pp. 3–6.

29)

29. Pace, P.E.: ‘Deteting and classifying low probability of intercept radar’ (Artech House, USA, 2009).

30)

30. Zhang, Z.K., Tian, Y.B.: ‘A novel resource scheduling method of netted radars based on Markov decision process during target tracking in clutter’, EURASIP J. Adv. Signal Process., 2016, 2016, (1), pp. 1–9.

31)

31. Zhang, Z.K., Salous, S., Li, H.L., et al: ‘Optimal coordination method of opportunistic array radars for multitargettrackingbased radio frequency stealth in clutter’, Radio Sci., 2016, 50, (11), pp. 1187–1196.

32)

32. Pace, P.E., Tan, C.K., Ong, C.K.: ‘Microwavephotonics direction finding system for interception of low probability of intercept radio frequency signals’, Opt. Eng., 2018, 57, (2), pp. 1–8, .

33)

33. Shi, C.G., Wang, F., Sellathurai, S., et al: ‘Robust transmission waveform design for distributed multipleradar systems based on low probability of intercept’, ETRI J., 2016, 38, (1), pp. 70–80.

34)

34. Shi, C.G., Salous, S., Wang, F., et al: ‘Low probability of interceptbased adaptive radar waveform optimization in signaldependent clutter for joint radar and cellular communication systems’, EURASIP J. Adv. Signal Process., 2016, 2016, pp. 1–13.

35)

35. Shi, C.G., Wang, F., Sellathurai, M., et al: ‘Power minimizationbased robust OFDM radar waveform design for radar and communication systems in coexistence’, IEEE Trans. Signal Process., 2018, 66, (5), pp. 1316–1330.

36)

36. Taghizadeh, O., Alirezaei, G., Mathar, R.: ‘Optimal energy efficient design for passive distributed radar systems’. IEEE Int. Conf. on Communications (ICC), London, UK, June 2015, pp. 6773–6778.

37)

37. Karush, W.: ‘Minima of functions of several variables with inequalities as side constraints’. , Department of Mathematics, University of Chicago, 1939.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietspr.2018.5212
Related content
content/journals/10.1049/ietspr.2018.5212
pub_keyword,iet_inspecKeyword,pub_concept
6
6