Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Low probability of intercept-based distributed MIMO radar waveform design against barrage jamming in signal-dependent clutter and coloured noise

This study investigates the problem of low probability of intercept (LPI)-based distributed multiple-input multiple-output (MIMO) radar waveform design against barrage jamming in signal-dependent clutter and coloured noise. Given the priori knowledge of the extended target impulse response, signal-dependent clutter, barrage jamming signals and coloured noise, the LPI-based scheme for optimal radar waveform design is proposed to minimise the total power consumption of the MIMO radar system by optimising the transmitted waveforms of different transmitters with a predetermined mutual information (MI) constraint for target characterisation performance. Firstly, the MI between the received echoes from the target at each receiver and the target impulse response is derived as a practical metric to characterise the parameter estimation performance of a target. Then, the LPI-based distributed MIMO radar waveform design strategy is developed. The resulting radar waveform optimisation problem is convex and solved analytically, whose solutions represent the optimum power allocation for each transmitter in the MIMO radar system. With the aid of numerical simulations, it is illustrated that to minimise the total transmission power, the optimal waveform should match with the target, clutter, jamming and coloured noise. In addition, it is also demonstrated that the LPI performance of the MIMO radar system can be significantly improved by employing the proposed radar waveform design scheme.

References

    1. 1)
      • 7. Wang, L.L., Wang, L.D., Zeng, Y.H., et al: ‘Jamming power allocation strategy for MIMO radar based on MMSE and mutual information’, IET Radar Sonar Navig., 2017, 11, (7), pp. 10811089.
    2. 2)
      • 13. Chen, Y.F., Nijsure, Y., Yuen, C., et al: ‘Adaptive distributed MIMO radar waveform optimization based on mutual information’, IEEE Trans. Aerosp. Electron. Syst., 2013, 49, (2), pp. 13741384.
    3. 3)
      • 17. Cheng, Z.Y., He, Z.S., Liao, B., et al: ‘MIMO radar waveform design with PAPR and similarity constraints’, IEEE Trans. Signal Process., 2018, 66, (4), pp. 968981.
    4. 4)
      • 28. Schleher, D.C.: ‘LPI radar: fact or fiction’, IEEE Aerosp. Electron. Syst. Mag., 2006, 21, (5), pp. 36.
    5. 5)
      • 6. Yan, J.K., Liu, H.W., Jiu, B., et al: ‘Simultaneous multibeam resource allocation scheme for multiple target tracking’, IEEE Trans. Signal Process., 2015, 63, (12), pp. 31103122.
    6. 6)
      • 37. Karush, W.: ‘Minima of functions of several variables with inequalities as side constraints’. Master's Dissertation, Department of Mathematics, University of Chicago, 1939.
    7. 7)
      • 19. Yang, Y., Blum, R.S.: ‘Minimax robust MIMO radar waveform design’, IEEE. J. Sel. Top. Signal. Process., 2007, 1, (1), pp. 147155.
    8. 8)
      • 15. Liu, H.W., Wang, X., Jiu, B., et al: ‘Wideband MIMO radar waveform design for multiple target imaging’, IEEE Sens. J., 2016, 16, (23), pp. 85458556.
    9. 9)
      • 14. Jiu, B., Liu, H.W., Wang, X., et al: ‘Knowledge-based spatial-temporal hierarchical MIMO radar waveform design method for target detection in heterogeneous clutter zone’, IEEE Trans. Signal Process., 2015, 63, (3), pp. 543554.
    10. 10)
      • 1. Fisher, E., Haimovich, A., Blum, R.S., et al: ‘Spatial diversity in radar-models and detection performance’, IEEE Trans. Signal Process., 2006, 54, (3), pp. 823836.
    11. 11)
      • 24. Panoui, A., Lambotharan, S., Chambers, J.A.: ‘Game theoretic distributed waveform design for multistatic radar networks’, IEEE Trans. Aerosp. Electron. Syst., 2016, 52, (4), pp. 18551865.
    12. 12)
      • 8. Yan, J.K., Liu, H.W., Pu, W.Q., et al: ‘Joint beam selection and power allocation for multiple target tracking in netted colocated MIMO radar system’, IEEE Trans. Signal Process., 2016, 64, (24), pp. 64176427.
    13. 13)
      • 27. Han, K.Y., Nehorai, A.: ‘Joint optimal design for MIMO radar frequency-hopping waveforms using game theory’, IEEE Trans. Aerosp. Electron. Syst., 2016, 52, (2), pp. 809820.
    14. 14)
      • 20. Naghibi, T., Behnia, F.: ‘MIMO radar waveform design in the presence of clutter’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (2), pp. 770781.
    15. 15)
      • 18. Yang, Y., Blum, R.S.: ‘MIMO radar waveform design based on mutual information and minimum mean-square error estimation’, IEEE Trans. Aerosp. Electron. Syst., 2007, 43, (1), pp. 330343.
    16. 16)
      • 3. Zhou, C.W., Gu, Y.J., Zhang, Y.D., et al: ‘Compressive sensing based coprime array direction-of-arrival estimation’, IET Commun., 2017, 11, (11), pp. 17191724.
    17. 17)
      • 2. Zhou, C.W., Gu, Y.J., He, S.B., et al: ‘A robust and efficient algorithm for coprime array adaptive beamforming’, IEEE Trans. Veh. Technol., 2018, 67, (2), pp. 10991112.
    18. 18)
      • 9. Naghsh, M.M., Mahmoud, M.H., Shahram, S.P., et al: ‘Unified optimization framework for multi-static radar code design using information-theoretic criteria’, IEEE Trans. Signal Process., 2013, 61, (21), pp. 54015416.
    19. 19)
      • 11. Shi, C.G., Wang, F., Zhou, J.J.: ‘Cramer-Rao bound analysis for joint target location and velocity estimation in frequency modulation based passive radar network’, IET Signal Process., 2016, 10, (7), pp. 780790.
    20. 20)
      • 32. Pace, P.E., Tan, C.K., Ong, C.K.: ‘Microwave-photonics direction finding system for interception of low probability of intercept radio frequency signals’, Opt. Eng., 2018, 57, (2), pp. 18, doi: 10.1117/1.OE.57.2.024103.
    21. 21)
      • 30. Zhang, Z.K., Tian, Y.B.: ‘A novel resource scheduling method of netted radars based on Markov decision process during target tracking in clutter’, EURASIP J. Adv. Signal Process., 2016, 2016, (1), pp. 19.
    22. 22)
      • 33. Shi, C.G., Wang, F., Sellathurai, S., et al: ‘Robust transmission waveform design for distributed multiple-radar systems based on low probability of intercept’, ETRI J., 2016, 38, (1), pp. 7080.
    23. 23)
      • 36. Taghizadeh, O., Alirezaei, G., Mathar, R.: ‘Optimal energy efficient design for passive distributed radar systems’. IEEE Int. Conf. on Communications (ICC), London, UK, June 2015, pp. 67736778.
    24. 24)
      • 5. Yan, J.K., Jiu, B., Liu, H.W., et al: ‘Prior knowledge based simultaneous multibeam power allocation algorithm for cognitive multiple targets tracking in clutter’, IEEE Trans. Signal Process., 2015, 63, (2), pp. 512527.
    25. 25)
      • 34. Shi, C.G., Salous, S., Wang, F., et al: ‘Low probability of intercept-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems’, EURASIP J. Adv. Signal Process., 2016, 2016, pp. 113.
    26. 26)
      • 21. Chen, C.Y., Vaidyanathan, P.P.: ‘MIMO radar waveform optimization with prior information of the extended target and clutter’, IEEE Trans. Signal Process., 2009, 57, (9), pp. 35333544.
    27. 27)
      • 31. Zhang, Z.K., Salous, S., Li, H.L., et al: ‘Optimal coordination method of opportunistic array radars for multi-target-tracking-based radio frequency stealth in clutter’, Radio Sci., 2016, 50, (11), pp. 11871196.
    28. 28)
      • 22. Qu, J.L., Jia, X., Peng, Y.N., et al: ‘Optimal waveform design for MIMO radar detection with clutter and noise’. IEEE CIE Int. Conf. on Radar, Chengdu, China, October 2011, pp. 559563.
    29. 29)
      • 26. Lan, X., Li, W., Wang, X.L., et al: ‘MIMO radar and target Stackelberg game in the presence of clutter’, IEEE Sens. J., 2015, 15, (12), pp. 69126920.
    30. 30)
      • 23. Wang, Y.X., Huang, G.C., Li, W., et al: ‘MIMO radar waveform design in the presence of clutter and colored noise’, J. Xidian Univ., 2017, 44, (4), pp. 125131.
    31. 31)
      • 4. Tang, B., Tang, J., Peng, Y.N.: ‘MIMO radar waveform design in colored noise based on information theory’, IEEE Trans. Signal Process., 2010, 58, (9), pp. 46844697.
    32. 32)
      • 16. Daniel, A., Popescu, D.C.: ‘MIMO radar waveform design for multiple extended target estimation based on greedy SINR maximization’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, March 2016, pp. 30063010.
    33. 33)
      • 25. Song, X.F., Willett, P., Zhou, S.L., et al: ‘The MIMO radar and jammer games’, IEEE Trans. Signal Process., 2012, 60, (2), pp. 687699.
    34. 34)
      • 12. Shi, C.G., Wang, F., Sellathurai, M., et al: ‘Transmitter subset selection in FM-based passive radar network for joint target parameter estimation’, IEEE Sens. J., 2016, 16, (15), pp. 60436052.
    35. 35)
      • 29. Pace, P.E.: ‘Deteting and classifying low probability of intercept radar’ (Artech House, USA, 2009).
    36. 36)
      • 10. Niu, R.X., Blum, R.S., Varshney, P.K., et al: ‘Target localization and tracking in noncoherent multiple-input multiple-output radar systems’, IEEE Trans. Aerosp. Electron. Syst., 2010, 48, (2), pp. 14661487.
    37. 37)
      • 35. Shi, C.G., Wang, F., Sellathurai, M., et al: ‘Power minimization-based robust OFDM radar waveform design for radar and communication systems in coexistence’, IEEE Trans. Signal Process., 2018, 66, (5), pp. 13161330.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2018.5212
Loading

Related content

content/journals/10.1049/iet-spr.2018.5212
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address