Mixing matrix estimation in UBSS based on homogeneous polynomials

Mixing matrix estimation in UBSS based on homogeneous polynomials

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An algorithm is proposed for mixing matrix estimation in underdetermined blind source separation (UBSS) based on homogeneous polynomials representation, in order to blindly identify a mixing matrix in the case where the source signal is insufficiently sparse. First, the observed signal subspaces (hyperplanes) are identified by polynomial fitting, differentiation, and spectral clustering. Then, the intersection lines between clustering planes are estimated by using normal vectors of each subspace, which are finally proved to be column vectors of the mixing matrix up to scaling and ordering. Based on the algebraic-geometric theory, the proposed algorithm can improve the accuracy of mixing matrix estimation, without being influenced by convergence. Simulation results indicate that the proposed algorithm has higher estimation accuracy than traditional algorithms. Additionally, the single-source and multi-source points of the source signal can be detected simultaneously, which increases the robustness of the algorithm.


    1. 1)
      • 1. Chabriel, G., Kleinsteuber, M., Moreau, E., et al: ‘Joint matrices decompositions and blind source separation: a survey of methods, identification, and applications’, IEEE Signal Process. Mag., 2014, 31, (3), pp. 3443.
    2. 2)
      • 2. Vincent, E., Bertin, N., Gribonval, R., et al: ‘From blind to guided audio source separation: how models and side information can improve the separation of sound’, IEEE Signal Process. Mag., 2014, 31, (3), pp. 107115.
    3. 3)
      • 3. Meganem, I., Deville, Y., Hosseini, S., et al: ‘Linear-quadratic blind source separation using NMF to unmix urban hyperspectral images’, IEEE Trans. Signal Process., 2014, 62, (7), pp. 18221833.
    4. 4)
      • 4. Mowla, M. R., Ng, S. C., Zilany, M. S. A., et al: ‘Artifacts-matched blind source separation and wavelet transform for multichannel EEG denoising’, Biomed. Signal Proc. Control, 2015, 22, pp. 111118.
    5. 5)
      • 5. Sha, Z., Huang, Z., Zhou, Y.: ‘Frequency-hopping signals based on underdetermined blind source separation’, IET Commun., 2013, 7, (14), pp. 14561464.
    6. 6)
      • 6. Xie, S., Yang, L., Yang, J. M., et al: ‘Time-frequency approach to underdetermined blind source separation’, IEEE Trans. Neural Netw. Learn. Syst., 2012, 23, (2), pp. 306316.
    7. 7)
      • 7. Guo, X. C., Tian, Y., Li, Y. B.: ‘A mixing matrix estimation algorithm for frequency hopping signals under the UBSS model’. Progress in Electromagnetics Research Symp. – Fall (PIERS – FALL), St Petersburg, Russia, 2017, pp. 284290.
    8. 8)
      • 8. Fu, W. H., Hei, Y. Q., Li, X. H.: ‘UBSS and blind parameters estimation algorithms for synchronous orthogonal FH signals’, J. Syst. Eng. Electron., 2014, 25, (16), pp. 911920.
    9. 9)
      • 9. Zhen, L. L., Peng, D. Z., Yi, Z., et al: ‘Underdetermined blind source separation using sparse coding’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, (12), pp. 31023108.
    10. 10)
      • 10. Chen, P., Peng, D. Z., Zhen, L. L.: ‘Underdetermined blind separation by combining sparsity and independence of sources’, IEEE. Access., 2017, 5, pp. 2173121742.
    11. 11)
      • 11. Zayyani, H., Babaie-zadeh, M., Haddadi, F.: ‘On the Cramer Rao bound for estimation the mixing matrix in noisy sparse component analysis’, IEEE Signal Process. Lett., 2008, 15, pp. 609612.
    12. 12)
      • 12. Zayyani, H., Babaie-Zadeh, M.: ‘Approximated Cramer-Rao bound for estimating the mixing matrix in the two-sensor noisy sparse component analysis (SCA)’, Digit. Signal Process., 2013, 23, (3), pp. 771779.
    13. 13)
      • 13. Zayyani, H., Babaie-Zadeh, M., Jutten, C.: ‘An iterative Bayesian algorithm for sparse component analysis in presence of noise’, IEEE Trans. Signal Process., 2009, 57, (11), pp. 43784390.
    14. 14)
      • 14. Gribonval, R., Lesage, S.: ‘A survey of sparse component analysis for blind source separation: principles perspectives and new challenges’. Proc. Eur. Symp. Artificial Neural Networks (ESANN), Bruges, Belgium, 2006, pp. 323330.
    15. 15)
      • 15. Li, Y. Q., Amari, S., Cichocki, A., et al: ‘Underdetermined blind source separation based on sparse representation’, IEEE Trans. Signal Process., 2006, 54, (2), pp. 423437.
    16. 16)
      • 16. Tan, B. H., Yang, Z. Y., Zhou, G. X., et al: ‘Algorithm for number estimation and separation of sources in underdetermined blind source separation’, Chin. Sci., 2009, 39, (3), pp. 349356.
    17. 17)
      • 17. Sun, J., Li, Y., Wen, J., et al: ‘Novel mixing matrix estimation approach in underdetermined blind source separation’, Neurocomputing, 2016, 173, (3), pp. 623632.
    18. 18)
      • 18. Reju, V. G., Koh, S. N., Soon, I. Y.: ‘An algorithm for mixing matrix estimation in instantaneous blind source separation’, Signal Process., 2009, 89, (9), pp. 17621773.
    19. 19)
      • 19. Dong, T., Lei, Y., Yang, J.: ‘An algorithm for underdetermined mixing matrix estimation’, Neurocomputing, 2013, 104, pp. 2634.
    20. 20)
      • 20. Zhen, L., Peng, D., Yi, Z., et al: ‘Underdetermined blind source separation using sparse coding’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, (12), pp. 31023108.
    21. 21)
      • 21. Georgiev, P., Theis, F., Cichocki, A.: ‘Sparse component analysis and blind source separation of underdetermined mixtures’, IEEE Trans. Neural Netw., 2005, 16, (4), pp. 992996.
    22. 22)
      • 22. Washizawa, Y., Cichocki, A.: ‘On-line K-PLANE clustering learning algorithm for sparse comopnent analysis’. IEEE Int. Conf. on Acoustics Speech and Signal Processing Proc., Toulouse, 2006, pp. VV.
    23. 23)
      • 23. Naini, F. M., Mohimani, G. H., Babaie-Zadeh, M., et al: ‘Estimating the mixing matrix in sparse component analysis (SCA) based on partial k-dimensional subspace clustering’, Neurocomputing, 2008, 71, (10–12), pp. 23302343.
    24. 24)
      • 24. Fu, W. H., Li, A. L., Ma, L. F., et al: ‘Undetermined blind separation based on estimation parameter potential function method’, Syst. Eng. Electron., 2014, 36, (4), pp. 619623.
    25. 25)
      • 25. Ma, Y., Yang, A. Y., Derksen, H., et al: ‘Estimation of subspace arrangements with applications in modeling and segmenting mixed data’, SIAM Rev., 2008, 50, (3), pp. 413458.
    26. 26)
      • 26. Bofill, P., Zibulevsky, M.: ‘Underdetermined blind source separation using sparse representations’, Signal Process., 2001, 81, (11), pp. 23532362.
    27. 27)
      • 27. Li, Y., Cichocki, A., Amari, S.: ‘Analysis of sparse representation and blind source separation’, Neural Comput., 2004, 16, (6), pp. 11931234.
    28. 28)
      • 28. Mohimani, H., Babaie-Zadeh, M., Jutten, C.: ‘A fast approach for overcomplete sparse decomposition based on smoothed l0 norm’, IEEE Trans. Signal Process., 2009, 57, (1), pp. 289301.
    29. 29)
      • 29. Vidal, R., Ma, Y., Sastry, S.: ‘Generalized principal component analysis (GPCA)’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (12), pp. 19451959.
    30. 30)
      • 30. Harris, J.: ‘Algebraic geometry: a first course’ (Springer Press, New York, 1992).
    31. 31)
      • 31. Wu, S., Shao, X. C., Song, R.: ‘Spectral clustering method for high dimensional data based on K-SVD’. Logistics, Int. Conf. on Informatics and Service Sciences (LISS), Barcelona, Spain, 2015, pp. 16.
    32. 32)
      • 32. Xu, H. W., He, J. F., He, Q., et al: ‘A spectral clustering method combining path with density’. IEEE Int. Conf. on Robotics and Biomimetics (ROBIO), Guangzhou, China, 2012, pp. 695698.
    33. 33)
      • 33. Liu, Y. H., Luo, S. W.: ‘A new spectral clustering method based on data histogram’. Int. Conf. on Signal Processing, Istanbul, Turkey, 2008, pp. 16331636.
    34. 34)
      • 34. Zhang, L. F., You, J.: ‘A spectral clustering based method for hyperspectral urban image’. Joint Urban Remote Sensing Event (JURSE), Dubai, United Arab Emirates, 2017, pp. 13.
    35. 35)
      • 35. Luxburg, U. V.: ‘A tutorial on spectral clustering’, Stat. Comput., 2007, 17, (4), pp. 395416.

Related content

This is a required field
Please enter a valid email address