http://iet.metastore.ingenta.com
1887

Adaptive regularisation for normalised subband adaptive filter: mean-square performance analysis approach

Adaptive regularisation for normalised subband adaptive filter: mean-square performance analysis approach

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The normalised subband adaptive filter (NSAF) is a useful adaptive filter, which improves the convergence rate compared with the normalised least mean-square algorithm. Most analytical results of the NSAF set the regularisation parameter set to zero or present only steady-state mean-square error performance of the regularised NSAF (-NSAF). This study presents a mean-square performance analysis of -NSAF, which analyses not only convergence behaviour but also steady-state behaviour. Furthermore, a novel adaptive regularisation for NSAF (AR-NSAF) is also developed based on the proposed analysis approach. The proposed AR-NSAF selects the optimal regularisation parameter that leads to improving the performance of the adaptive filter. Simulation results comparing the proposed analytical results with the results achieved from the simulation are presented. In addition, these results verify that the proposed AR-NSAF outperforms the previous algorithms in a system-identification and acoustic echo-cancellation scenarios.

References

    1. 1)
      • 1. Haykin, S.S.: ‘Adaptive filter theory’ (Pearson-Hall, Upper Saddle River, NJ, 2002, 4th Edn.).
    2. 2)
      • 2. Sayed, A.H.: ‘Fundamentals of adaptive filtering’ (John Wiley & Sons, Hoboken, New Jersey, 2003).
    3. 3)
      • 3. Ozeki, K., Umeda, T.: ‘An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties’, Electron. Commun. Jpn. I, Commun., 1984, 67, (5), pp. 1927.
    4. 4)
      • 4. Lee, K.A., Gan, W.S.: ‘Inherent decorrelating and least perturbation properties of the normalized subband adaptive filter’, IEEE Trans. Signal Process., 2006, 54, (11), pp. 44754480.
    5. 5)
      • 5. Lee, K.A., Gan, W.S.: ‘Improving convergence of the NLMS algorithm using constrained subband updates’, IEEE Signal Process. Lett., 2004, 11, (9), pp. 736739.
    6. 6)
      • 6. Shin, J., Kong, N., Park, P.: ‘Normalised subband adaptive filter with variable step size’, Electron. Lett., 2012, 48, (4), pp. 204206.
    7. 7)
      • 7. Jeong, J.J., Koo, K., Choi, G.T., et al: ‘A variable step size for normalized subband adaptive filters’, IEEE Signal Process. Lett., 2012, 19, (12), pp. 906909.
    8. 8)
      • 8. Ni, J., Li, F.: ‘A variable regularization matrix normalized subband adaptive filter’, IEEE Signal Process. Lett., 2009, 16, (2), pp. 105108.
    9. 9)
      • 9. Ni, J., Li, F.: ‘Normalised subband adaptive filter with new variable regularization matrix’, Electron. Lett., 2010, 46, (18), pp. 12931295.
    10. 10)
      • 10. Rabiee, M., Attari, M.A., Ghaemmaghami, S.: ‘A low complexity NSAF algorithm’, IEEE Signal Process. Lett., 2012, 19, (11), pp. 716719.
    11. 11)
      • 11. Jeong, J.J., Koo, K., Koo, G., et al: ‘Variable regularization for normalized subband adaptive filter’, Signal Process., 2014, 104, pp. 432436.
    12. 12)
      • 12. Shin, H.C., Sayed, A.H.: ‘Mean-square performance of a family of affine projection algorithms’, IEEE Trans. Signal Process., 2004, 52, (1), pp. 90102.
    13. 13)
      • 13. Yousef, N.R., Sayed, A.H.: ‘A unified approach to the steady-state and tracking analyses of adaptive filters’, IEEE Trans. Signal Process., 2001, 49, (2), pp. 314324.
    14. 14)
      • 14. Yousef, N.R., Sayed, A.H.: ‘Steady-state and tracking analyses of the sign algorithm without the explicit use of the independence assumption’, IEEE Signal Process. Lett., 2000, 7, (11), pp. 307309.
    15. 15)
      • 15. Park, P., Lee, C.H., Ko, J.W.: ‘Mean-square deviation analysis of affine projection algorithm’, IEEE Trans. Signal Process., 2011, 59, (12), pp. 57895799.
    16. 16)
      • 16. Shin, J., Lee, C.H., Kong, N., et al: ‘An affine projection algorithm with update-interval selection’, IEEE Trans. Signal Process., 2013, 61, (18), pp. 46004609.
    17. 17)
      • 17. Shin, H.C., Song, W.J., Sayed, A.H.: ‘Mean-square performance of data-reusing adaptive algorithms’, IEEE Signal Process. Lett., 2005, 12, (12), pp. 851854.
    18. 18)
      • 18. Jeong, J.J., Kim, S.H., Koo, G., et al: ‘Mean-square deviation analysis of multiband-structured subband adaptive filter algorithm’, IEEE Trans. Signal Process., 2016, 64, (4), pp. 985994.
    19. 19)
      • 19. Yin, W., Mehr, A.S.: ‘Stochastic analysis of the normalized subband adaptive filter algorithm’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2011, 58, (5), pp. 10201033.
    20. 20)
      • 20. Lee, K.A., Gan, W.S., Kuo, S.M.: ‘Mean-square performance analysis of the normalized subband adaptive filter’. Fortieth Asilomar Conf. Signals, Systems and Computers 2006. ACSSC'06, Pacific Grove, CA, USA, 2006, pp. 248252.
    21. 21)
      • 21. Ni, J., Chen, X.: ‘Steady-state mean-square error analysis of regularized normalized subband adaptive filters’, Signal Process., 2013, 93, (9), pp. 26482652.
    22. 22)
      • 22. Slock, D.T.: ‘On the convergence behavior of the LMS and the normalized LMS algorithms’, IEEE Trans. Signal Process., 1993, 41, (9), pp. 28112825.
    23. 23)
      • 23. Sankaran, S.G., Beex, A.L.: ‘Convergence behavior of affine projection algorithms’, IEEE Trans. Signal Process., 2000, 48, (4), pp. 10861096.
    24. 24)
      • 24. Zhi, Y., Yang, Y., Zheng, X., et al: ‘Statistical tracking behavior of affine projection algorithm for unity step size’, Appl. Math. Comput., 2016, 283, pp. 2228.
    25. 25)
      • 25. Lee, K.A., Gan, W.S., Kuo, S.M.: ‘Subband adaptive filtering: theory and implementation’ (John Wiley & Sons, Chichester, UK, 2009).
    26. 26)
      • 26. Benesty, J., Rey, H., Vega, L.R., et al: ‘A nonparametric VSS NLMS algorithm’, IEEE Signal Process. Lett., 2006, 13, (10), pp. 581584.
    27. 27)
      • 27. Paleologu, C., Benesty, J., Ciochina, S.: ‘A variable step-size affine projection algorithm designed for acoustic echo cancellation’, IEEE Trans. Audio Speech Lang. Process., 2008, 16, (8), pp. 14661478.
    28. 28)
      • 28. Huang, H.C., Lee, J.: ‘A new variable step-size NLMS algorithm and its performance analysis’, IEEE Trans. Signal Process., 2012, 60, (4), pp. 20552060.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2018.5165
Loading

Related content

content/journals/10.1049/iet-spr.2018.5165
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address