Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Electrocardiogram signal denoising by clustering and soft thresholding

Separating signal from unwanted noise is a major problem when analysing biomedical data, such as electrocardiography. Electrocardiogram (ECG) data are typically a mixture of real signal and various sources of noise, including baseline wander, power line interference, and electromagnetic interference. Since ECG signals are non-stationary physiological signals, the wavelet transform has been proposed to be an effective tool for eliminating unwanted noise from the ECG data. Here, the authors proposed a new noise reduction method for ECG data based on the discrete wavelet transform and hidden Markov model. They performed Monte Carlo simulations to compare the performance of this new method with seven other well-known denoising techniques.

References

    1. 1)
      • 8. Han, G., Xu, Z.: ‘Electrocardiogram signal denoising based on a new improved wavelet thresholding’, Rev. Sci. Instrum., 2016, 87, (8), p. 084303.
    2. 2)
      • 19. Zucchini, W., Macdonald, I.L.: ‘Hidden Markov models for time series: an introduction using R’ (CRC Press, Boca Raton, 2009).
    3. 3)
      • 24. Mooney, C.Z.: ‘Monte Carlo simulation’ (Sage Publications, Thousand Oaks, CA,USA, 1997), Vol. 116.
    4. 4)
      • 25. MIT-BIH Database: Available athttps://www.physionet.org/cgi-bin/atm/ATM.
    5. 5)
      • 17. Lahmiri, S., Boukadoum, M.: ‘A weighted bio-signal denoising approach using empirical mode decomposition’, Biomed. Eng. Lett., 2015, 5, (2), pp. 131139.
    6. 6)
      • 13. Romberg, J.K., Choi, H., Baraniuk, R.G.: ‘Bayesian tree-structured image modeling using wavelet-domain hidden Markov models’, IEEE Trans. Image Process., 2001, 10, (7), pp. 10561068.
    7. 7)
      • 22. Asgari, M., Shafran, I.: ‘Improvements to harmonic model for extracting better speech features in clinical applications’, Comput. Speech. Lang., 2018, 47, pp. 298313.
    8. 8)
      • 7. Donoho, D.L., Johnstone, I.M.: ‘Adapting to unknown smoothness via wavelet shrinkage’, J. Am. Stat. Assoc., 1995, 90, (432), pp. 12001224.
    9. 9)
      • 2. Chazal de, P., Dwyer, M.O., et al: ‘Automatic classification of heartbeats using ECG morphology and heartbeat interval features’, IEEE Trans. Biomed. Eng., 2004, 51, (7), pp. 11961206.
    10. 10)
      • 11. Borran, M.J., Nowak, R.D.: ‘Wavelet-based denoising using hidden Markov models’, Acoust. Speech Signal Process., 2001, 6, pp. 39253928.
    11. 11)
      • 21. Stein, C.M.: ‘Estimation of the mean of a multivariate normal distribution’, Ann. Stat., 1981, 9, pp. 11351151.
    12. 12)
      • 5. Condat, L.: ‘A direct algorithm for 1d total variation denoising’, IEEE Signal Process. Lett., 2013, 20, (1), pp. 10541057.
    13. 13)
      • 26. Shahriari, Y., Fidler, R., Pelter, M., et al: ‘Electrocardiogram signal quality assessment based on structural image similarity metric’, IEEE Trans. Biomed. Eng., 2017, PP, 65, (99), pp. 19.
    14. 14)
      • 3. Kim, D.H., Oh, H.S.: ‘Hierarchical smoothing technique by empirical mode decomposition’, Korean J. Appl. Stat., 2006, 19, (2), pp. 319330.
    15. 15)
      • 10. Li, J., Zhang, Y.: ‘An improved Bayesian wavelet shrinkage denoising’, Tech. Autom. Appl., 2012, 1, p. 019.
    16. 16)
      • 6. Percival, D.B., Walden, A.T.: ‘Wavelet methods for time series analysis’ (Cambridge University Press, Cambridge, 2006), Vol. 4.
    17. 17)
      • 18. Rakshit, M., Das, S.: ‘An efficient ECG denoising methodology using empirical mode decomposition and adaptive switching mean filter’, Biomed. Signal Proc. Control, 2018, 40, pp. 140148.
    18. 18)
      • 12. Crouse, M.S., Nowak, R.D., Baraniuk, R.G.: ‘Wavelet-based statistical signal processing using hidden Markov models’, IEEE Trans. Signal Process., 1998, 46, (4), pp. 886902.
    19. 19)
      • 16. Lahmiri, S., Boukadoum, M.: ‘Physiological signal denoising with variational mode decomposition and weighted reconstruction after DWT thresholding’. IEEE Int. Symp. on Circuits and Systems (ISCAS), Lisbon, Portugal, 2015, pp. 806809.
    20. 20)
      • 20. Meyer, Y.: ‘Wavelets: algorithms and applications’ (SIAM, Philadelphia, Pennsylvania, USA, 1993).
    21. 21)
      • 1. Elhaj, F.A., Salim, N., et al: ‘Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals’, Comput. Methods Programs Biomed., 2016, 127, pp. 5263.
    22. 22)
      • 9. Chipman, H.A., Kolaczyk, E.D., McCulloch, R.E.: ‘Adaptive Bayesian wavelet shrinkage’, J. Am. Stat. Assoc., 1997, 92, (440), pp. 14131421.
    23. 23)
      • 14. Su, T., Zhang, D.F., Bi, D.Y.: ‘Denoising method based on wavelet-domain classified hidden Markov tree model’, Infrared Laser Eng., 2005, 34, (2), pp. 232235.
    24. 24)
      • 4. Knight, M.I., Nason, G.P.: ‘A non-decimated lifting transform’, Stat. Comput., 2009, 19, (1), pp. 116.
    25. 25)
      • 15. Lahmiri, S.: ‘Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains’, Healthc. Technol. Lett., 2014, 1, (3), pp. 104109.
    26. 26)
      • 23. Forney, G.D.: ‘The Viterbi algorithm’, Proc. IEEE, 1973, 61, (3), pp. 268278.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2018.5162
Loading

Related content

content/journals/10.1049/iet-spr.2018.5162
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address