http://iet.metastore.ingenta.com
1887

Blind signal separation method and relationship between source separation and source localisation in the TF plane

Blind signal separation method and relationship between source separation and source localisation in the TF plane

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A method for solving the instantaneous mixtures of the multiple non-stationary wideband signals in the time–frequency (TF) plane is proposed. The blind source separation is performed by calculation of spatial TF distribution matrices, estimation of a separating matrix, estimation of permutation matrices and scaling matrices and TF synthesis. The simulation result shows that the proposed method improves the signal-to-distortion ratio than the preceding methods. Moreover, also the mutual relationship between the source localisation and the source separation is clarified. The source localisation methods using the source separation result and the source separation method using the source localisation result are proposed.

References

    1. 1)
      • 1. Benesty, J., Chen, J., Huang, Y.: ‘Microphone array signal processing’ (Springer-Verlag, Berlin Heidelberg, 2008), p. 240, ISBN 978-3-540-78611-5.
    2. 2)
      • 2. Huang, Y., Benesty, J., Chen, J.: ‘Acoustic MIMO signal processing’ (Springer-Verlag, Berlin Heidelberg, Germany, 2006), p. 378, ISBN 10 3-540-37630-5.
    3. 3)
      • 3. Belouchrani, A., Amin, M.G.: ‘Blind source separation based on time–instantaneous signal representations’, IEEE Trans. Signal Process., 1998, 46, (11), pp. 28882897.
    4. 4)
      • 4. Belouchrani, A., Meraim, K.A., Cardoso, J.F., et al: ‘A blind source separation technique using second-order statistics’, IEEE Trans. Signal Process., 1997, 45, (2), pp. 434444.
    5. 5)
      • 5. Cichocki, A., Amari, S.: ‘Adaptive blind signal and image processing’ (John Wiley & Sons Ltd., Springer Dordrecht Heidelberg London New York, 2002), p. 555, ISBN 0471 60791 6.
    6. 6)
      • 6. Curnew, S.R.: ‘Independent component analysis for blind source separation in MIMO-OFDM system’ (Dalhouse University, Halifax, Nova Scotia, 2007), p. 66.
    7. 7)
      • 7. Herault, J., Jutten, C., Ans, B.: ‘Detection de grandeurs primitives dans un message composite par une architecture de calul neuromimetique un apprentissage non supervise’. Proc. Groupe d'Etudes du Traitement du Signal et des Images, France, 1985.
    8. 8)
      • 8. Cardoso, J.-F., Souloumiac, A.: ‘Blind beamforming for non-Gaussian signals’, IEE Proc. F, Radar Signal Process., 1993, 140, (6), pp. 362370.
    9. 9)
      • 9. Moreau, E., Macchi, O.: ‘New self-adaptive algorithms for source separation based on contrast functions’. Proc. IEEE Signal Processing Workshop, Higher Order Statistics, Lake Tahoe, CA, 1993.
    10. 10)
      • 10. Belouchrani, A., Cardoso, J.-F.: ‘Maximum likelihood source separation for discrete sources’. Proc. European Signal Processing Conf., Edinburgh, Scotland, 1994, pp. 768771.
    11. 11)
      • 11. Bell, A.J., Sejnowski, T.J.: ‘An information-maximization approach to blind separation and blind convolution’, Neural Comput., 1995, 7, (6), pp. 11291159.
    12. 12)
      • 12. Hyvarinen, A., Oja, E.: ‘A fast fixed-point algorithm for independent component analysis’, Neural Comput., 1997, 9, pp. 14831492.
    13. 13)
      • 13. Pham, D.-T.: ‘Joint approximate diagonalization of positive definite matrices’, SIAM J. Matrix Anal. Appl., 2001, 22, (4), pp. 11361152.
    14. 14)
      • 14. Ziehe, A., Laskov, P., Nolte, G., et al: ‘A fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation’, J. Mach. Learn. Res., 2004, 5, pp. 777800.
    15. 15)
      • 15. Yeredor, A., Ziehe, A., Müller, K.-R.: ‘Approximate joint diagonalization using natural gradient approach’. Proc. ICA: Independent Component Analysis and Blind Sources Separation, Granada, Spain, September 2004, (LNCS, 3195), pp. 8996.
    16. 16)
      • 16. Chabriel, G., Barrère, J., Moreau, N.T., et al: ‘Algebraic joint zero-diagonalization and blind sources separation’, IEEE Trans. Signal Process., 2008, 56, (3), pp. 980989.
    17. 17)
      • 17. Lu, F., Huang, Z., Jiang, W.: ‘Underdetermined blind separation of non-disjoint signals in time–frequency domain based on matrix diagonalization’, Signal Process., 2011, 91, pp. 15681577.
    18. 18)
      • 18. Bourgeois, J., Minker, W.: ‘Time-domain beamforming and blind source separation’ (Springer Dordrecht, Springer Science+Business Media, LLC, Heidelberg, London, New York, 2007), p. 225, ISBN 978-0-387-68835-0.
    19. 19)
      • 19. Amari, S., Douglas, S.C., Cichocki, A., et al: ‘Multichannel blind deconvolution and equalization using the natural gradient’. Proc. IEEE Int. Workshop on Wireless Communication, France, 1997, pp. 101104.
    20. 20)
      • 20. Thomas, J., Deville, Y., Hosseini, S.: ‘Time-domain fast fixed-point algorithms for instantaneous ICA’, IEEE Signal Process. Lett., 2006, 13, (4), pp. 228231.
    21. 21)
      • 21. Mei, T., Xi, J., Yin, F., et al: ‘Blind source separation based on time-domain optimization of an instantaneous-domain independence criterion’, IEEE Trans. Audio Speech Lang. Process., 2006, 14, (6), pp. 20752085.
    22. 22)
      • 22. Comon, P.: ‘Independent component analysis, a new concept’, Signal Process., 1994, 36, (3), pp. 287314.
    23. 23)
      • 23. Ikhlef, A., Meraim, K.A., Guennec, D.L.: ‘Blind source separation and equalization with controlled delay for MIMO instantaneous systems’, Signal Process., 2010, 90, pp. 26552666.
    24. 24)
      • 24. Liu, Q., Wang, W., Jackson, P.: ‘Use of bimodal coherence to resolve the permutation problem in instantaneous BSS’, Signal Process., 2012, 92, pp. 19161927.
    25. 25)
      • 25. Asano, F., Ikeda, S., Ogawa, M., et al: ‘Combined approach of array processing and independent component analysis for blind separation of acoustic signals’, IEEE Trans. Speech Audio Process., 2003, 11, (3), pp. 204215.
    26. 26)
      • 26. Sawada, H., Mukai, R., Araki, S., et al: ‘A robust and precise method for solving the permutation problem of instantaneous-domain blind source separation’, IEEE Trans. Speech Audio Process., 2004, 12, (5), pp. 530538.
    27. 27)
      • 27. Yilmaz, Ö, Rickard, S.: ‘Blind separation of speech mixtures via time–frequency masking’, IEEE Trans. Signal Process., 2004, 52, (7), pp. 18301847.
    28. 28)
      • 28. Tengtrairat, N., Gao, B., Woo, W.L., et al: ‘Online noisy single-channel source separation by adaptive spectrum amplitude estimator and masking’, IEEE Trans. Signal Process., 2016, 64, (7), pp. 18811895.
    29. 29)
      • 29. Tengtrairat, N., Parathai, P., Woo, W.L.: ‘Blind 2D signal direction for limited-sensor space using maximum likelihood estimation’, Asia Pac. J. Sci. Technol., 2017, 22, (2), pp. 4249.
    30. 30)
      • 30. Boashash, B.: ‘Time instantaneous signal analysis and processing’ (SPRQ University of Technology Brisbane, Australia, 2003), p. 743, ISBN 0-08-044335-4.
    31. 31)
      • 31. Cirillo, L., Zoubir, A., Amin, M.: ‘Blind source separation in the time–frequency domain based on multiple hypothesis testing’, IEEE Trans. Signal Process., 2008, 56, (6), pp. 22672279.
    32. 32)
      • 32. Visse, E.: ‘Frequency domain passive broadband speaker localization using a permutation-free blind source separation algorithm’. IEEE Int. Conf. Acoustics, Speech and Signal Processing – (ICASSP'07), Honolulu, HI, USA, 2007, pp. 673678.
    33. 33)
      • 33. Sharif, W., Chakhchoukh, Y., Zoubir, A.M.: ‘Robust spatial time–frequency distribution matrix estimation with application to direction-of-arrival estimation’, Signal Process., 2011, 91, pp. 26302638.
    34. 34)
      • 34. Wax, M., Sheinvald, J.: ‘A least-squares approach to joint diagonalization’, IEEE Signal Process. Lett., 1997, 4, pp. 5253.
    35. 35)
      • 35. Vincent, E., Gribonval, R., Févotte, C.: ‘Performance measurement in blind audio source separation’, IEEE Trans. Audio Speech Lang. Process., 2006, 14, (4), pp. 14621469.
    36. 36)
      • 36. Cholnam, O., Dokkil, K., Cholyong, J.: ‘Spatial spectrum for direction of arrival estimation of multiple non-stationary wideband sources in the time–frequency plane’, IET Signal Process., 2016, 10, (9), pp. 11051111.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2018.5132
Loading

Related content

content/journals/10.1049/iet-spr.2018.5132
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address