Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Sparse signal recovery via minimax-concave penalty and -norm loss function

In sparse signal recovery, to overcome the -norm sparse regularisation's disadvantages tendency of uniformly penalise the signal amplitude and underestimate the high-amplitude components, a new algorithm based on a non-convex minimax-concave penalty is proposed, which can approximate the -norm more accurately. Moreover, the authors employ the -norm loss function instead of the -norm for the residual error, as the -loss is less sensitive to the outliers in the measurements. To rise to the challenges introduced by the non-convex non-smooth problem, they first employ a smoothed strategy to approximate the -norm loss function, and then use the difference-of-convex algorithm framework to solve the non-convex problem. They also show that any cluster point of the sequence generated by the proposed algorithm converges to a stationary point. The simulation result demonstrates the authors’ conclusions and indicates that the algorithm proposed in this study can obviously improve the reconstruction quality.

References

    1. 1)
      • 21. Zhou, Y.Y., Ye, Z.F., Huang, J.J.: ‘Improved decision-based detail-preserving variational method for removal of random-valued impulse noise’, IET Image Process., 2012, 6, (7), pp. 976985.
    2. 2)
      • 17. Gong, P., Ye, J., Zhang, C.: ‘Robust multi-task feature learning’. Proc. Int. Conf. Knowledge Discovery and Data mining, 2012, Beijing, China, pp. 895903.
    3. 3)
      • 30. Le, T., Dinh, T., Van, N.: ‘Exact penalty and error bounds in DC programming’, J. Glob. Optim., 2012, 52, (3), pp. 509535.
    4. 4)
      • 14. Pant, J., Lu, W., Antoniou, A.: ‘New improved algorithms for compressive sensing based on LP norm’, IEEE Trans. Circuits Syst. II, Express Briefs, 2014, 61, (3), pp. 198202.
    5. 5)
      • 16. Zhang, T.: ‘Multi-stage convex relaxation for feature selection’, Bernoulli. (Andover), 2013, 19, (5B), pp. 22772293.
    6. 6)
      • 32. Yin, P., Lou, Y., He, Q., et al: ‘Minimization of L1-2 for compressed sensing’, SIAM J. Sci. Comput., 2015, 37, (1), pp. 536563.
    7. 7)
      • 33. Tono, K., Takeda, A., Gotoh, J.: ‘Efficient DC algorithm for constrained sparse optimization’, arXiv preprint, 2017, arXiv:1701.08498.
    8. 8)
      • 34. Wen, B., Chen, X., Pong, T.: ‘A proximal difference-of-convex algorithm with extrapolation’, Computational optimization and applications2018, 69, (2), pp. 297324.
    9. 9)
      • 26. Wen, F., Liu, P., Liu, Y., et al: ‘Robust sparse recovery in impulsive noise via LP-L1 optimization’, IEEE Trans. Signal Process., 2017, 65, (1), pp. 105118.
    10. 10)
      • 1. Candès, E.J., Romberg, J., Tao, T.: ‘Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information’, IEEE Trans. Inf. Theory, 2006, 52, (2), pp. 489509.
    11. 11)
      • 25. Wen, F., Liu, P., Liu, Y., et al: ‘Robust sparse recovery for compressive sensing in impulsive noise using ℓp-norm model fitting’. Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 46434647.
    12. 12)
      • 19. Lou, Y., Yin, P., He, Q., et al: ‘Computing sparse representation in a highly coherent dictionary based on difference of L1 and L2’, J. Sci. Comput., 2015, 64, (1), pp. 178196.
    13. 13)
      • 11. Candes, E.J., Wakin, M.B., Boyd, S.P.: ‘Enhancing sparsity by reweighted L1 minimization’, J. Fourier Anal. Appl., 2008, 14, (5–6), pp. 877905.
    14. 14)
      • 37. Nesterov, Y.: ‘Gradient methods for minimizing composite functions’, Math. Program., 2013, 140, (1), pp. 125161.
    15. 15)
      • 38. Gong, P., Zhang, C., Lu, Z., et al: ‘A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems’. Proc. Int. Conf. Machine Learning, Atlanta, Georgia, 2013, pp. 3745.
    16. 16)
      • 22. Bar, L., Brook, A., Sochen, N., et al: ‘Deblurring of color images corrupted by impulsive noise’, IEEE Trans. Image Process., 2007, 16, (4), pp. 11011111.
    17. 17)
      • 7. Yang, J., Zhang, Y.: ‘Alternating direction algorithms for L1-problemsincompressivesensing’, SIAM J. Sci. Comput., 2011, 33, (1), pp. 250278.
    18. 18)
      • 9. Jaggi, M.: ‘Revisiting Frank-Wolfe: projection-free sparse convex optimization’. Proc. Int. Conf. Machine Learning, Atlanta, Georgia, 2013, pp. 427435.
    19. 19)
      • 15. Zhang, T.: ‘Analysis of multi-stage convex relaxation for sparse regularization’, J. Mach. Learn. Res., 2010, 11, pp. 10811107.
    20. 20)
      • 35. Selesnick, I., Farshchian, M.: ‘Sparse signal approximation via non-separable regularization’, IEEE Trans. Signal Process., 2017, 65, (10), pp. 25612575.
    21. 21)
      • 3. Patel, V., Easley, G., Healy, J., et al: ‘Compressed synthetic aperture radar’, IEEE. J. Sel. Top. Signal Process., 2010, 4, (2), pp. 244254.
    22. 22)
      • 20. Lou, Y., Yan, M.: ‘Fast L1–L2 minimization via a proximal operator’, J. Sci. Comput., 2017, 74, (2), pp. 119.
    23. 23)
      • 12. Xu, Z., Chang, X., Xu, F., et al: ‘L1/2 regularization: a thresholding representation theory and a fast solver’, IEEE Trans. Neural Netw. Learn. Syst., 2012, 23, (7), pp. 10131027.
    24. 24)
      • 4. Sun, Y., Tao, J.: ‘Few views image reconstruction using alternating direction method via 0norm minimization’, Int. J. Imaging Syst. Technol., 2014, 24, (3), pp. 215223.
    25. 25)
      • 36. Selesnick, I.: ‘Sparse regularization via convex analysis’, IEEE Trans. Signal Process., 2017, 65, (17), pp. 44814494.
    26. 26)
      • 28. Thi, L., Dinh, T., Le, H., et al: ‘DC approximation approaches for sparse optimization’, Eur. J. Oper. Res., 2015, 244, (1), pp. 2646.
    27. 27)
      • 6. Chen, H., Tao, J., Sun, Y., et al: ‘MR imaging reconstruction using a modified descent-type alternating direction method’, Int. J. Imaging Syst. Technol., 2016, 26, (1), pp. 4354.
    28. 28)
      • 29. Tao, P.: ‘The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems’, Ann. Oper. Res., 2005, 133, (1-4), pp. 2346.
    29. 29)
      • 10. Beck, A., Teboulle, M.: ‘A fast iterative shrinkage-thresholding algorithm for linear inverse problems’, SIAM J. Imaging Sci., 2009, 2, (1), pp. 183202.
    30. 30)
      • 18. Zhang, S., Qian, H., Chen, W., et al: ‘A concave conjugate approach for nonconvex penalized regression with the MCP penalty’. AAAI Conf. on Artificial Intelligence, Bellevue, Washington, 2013, pp. 10271033.
    31. 31)
      • 27. Huber, P.J.: ‘Robust statistics’ (Wiley, New York, 1981).
    32. 32)
      • 23. Pham, D., Venkatesh, S.: ‘Improved image recovery from compressed data contaminated with impulsive noise’, IEEE Trans. Image Process., 2012, 21, (1), pp. 397405.
    33. 33)
      • 24. Pham, D., Venkatesh, S.: ‘Efficient algorithms for robust recovery of images from compressed data’, IEEE Trans. Image Process., 2013, 22, (12), pp. 47244737.
    34. 34)
      • 8. Goldstein, T., Osher, S.: ‘The split Bregman method for L1-regularized problems’, SIAM J. Imaging Sci., 2009, 2, (2), pp. 323343.
    35. 35)
      • 2. Wen, F., Pei, L., Yang, Y., et al: ‘Efficient and robust recovery of sparse signal and image using generalized nonconvex regularization’, IEEE Trans. Comput. Imaging, 2017, 3, (4), pp. 566579.
    36. 36)
      • 31. Lou, Y., Zeng, T., Osher, S., et al: ‘A weighted difference of anisotropic and isotropic total variation model for image processing’, SIAM J. Imaging Sci., 2015, 8, (3), pp. 17981823.
    37. 37)
      • 13. Lai, M., Xu, Y., Yin, W.: ‘Improved iteratively reweighted least squares for unconstrained smoothed Lq minimization’, SIAM J. Numer. Anal., 2013, 51, (2), pp. 927957.
    38. 38)
      • 5. Sun, Y., Tao, J.: ‘Image reconstruction from few views by ℓ0-norm optimization’, Chin. Phys. B, 2014, 23, (7), p. 078703.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2018.5130
Loading

Related content

content/journals/10.1049/iet-spr.2018.5130
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address