http://iet.metastore.ingenta.com
1887

Sparse signal recovery via minimax-concave penalty and -norm loss function

Sparse signal recovery via minimax-concave penalty and -norm loss function

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In sparse signal recovery, to overcome the -norm sparse regularisation's disadvantages tendency of uniformly penalise the signal amplitude and underestimate the high-amplitude components, a new algorithm based on a non-convex minimax-concave penalty is proposed, which can approximate the -norm more accurately. Moreover, the authors employ the -norm loss function instead of the -norm for the residual error, as the -loss is less sensitive to the outliers in the measurements. To rise to the challenges introduced by the non-convex non-smooth problem, they first employ a smoothed strategy to approximate the -norm loss function, and then use the difference-of-convex algorithm framework to solve the non-convex problem. They also show that any cluster point of the sequence generated by the proposed algorithm converges to a stationary point. The simulation result demonstrates the authors’ conclusions and indicates that the algorithm proposed in this study can obviously improve the reconstruction quality.

References

    1. 1)
      • 1. Candès, E.J., Romberg, J., Tao, T.: ‘Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information’, IEEE Trans. Inf. Theory, 2006, 52, (2), pp. 489509.
    2. 2)
      • 2. Wen, F., Pei, L., Yang, Y., et al: ‘Efficient and robust recovery of sparse signal and image using generalized nonconvex regularization’, IEEE Trans. Comput. Imaging, 2017, 3, (4), pp. 566579.
    3. 3)
      • 3. Patel, V., Easley, G., Healy, J., et al: ‘Compressed synthetic aperture radar’, IEEE. J. Sel. Top. Signal Process., 2010, 4, (2), pp. 244254.
    4. 4)
      • 4. Sun, Y., Tao, J.: ‘Few views image reconstruction using alternating direction method via 0norm minimization’, Int. J. Imaging Syst. Technol., 2014, 24, (3), pp. 215223.
    5. 5)
      • 5. Sun, Y., Tao, J.: ‘Image reconstruction from few views by ℓ0-norm optimization’, Chin. Phys. B, 2014, 23, (7), p. 078703.
    6. 6)
      • 6. Chen, H., Tao, J., Sun, Y., et al: ‘MR imaging reconstruction using a modified descent-type alternating direction method’, Int. J. Imaging Syst. Technol., 2016, 26, (1), pp. 4354.
    7. 7)
      • 7. Yang, J., Zhang, Y.: ‘Alternating direction algorithms for L1-problemsincompressivesensing’, SIAM J. Sci. Comput., 2011, 33, (1), pp. 250278.
    8. 8)
      • 8. Goldstein, T., Osher, S.: ‘The split Bregman method for L1-regularized problems’, SIAM J. Imaging Sci., 2009, 2, (2), pp. 323343.
    9. 9)
      • 9. Jaggi, M.: ‘Revisiting Frank-Wolfe: projection-free sparse convex optimization’. Proc. Int. Conf. Machine Learning, Atlanta, Georgia, 2013, pp. 427435.
    10. 10)
      • 10. Beck, A., Teboulle, M.: ‘A fast iterative shrinkage-thresholding algorithm for linear inverse problems’, SIAM J. Imaging Sci., 2009, 2, (1), pp. 183202.
    11. 11)
      • 11. Candes, E.J., Wakin, M.B., Boyd, S.P.: ‘Enhancing sparsity by reweighted L1 minimization’, J. Fourier Anal. Appl., 2008, 14, (5–6), pp. 877905.
    12. 12)
      • 12. Xu, Z., Chang, X., Xu, F., et al: ‘L1/2 regularization: a thresholding representation theory and a fast solver’, IEEE Trans. Neural Netw. Learn. Syst., 2012, 23, (7), pp. 10131027.
    13. 13)
      • 13. Lai, M., Xu, Y., Yin, W.: ‘Improved iteratively reweighted least squares for unconstrained smoothed Lq minimization’, SIAM J. Numer. Anal., 2013, 51, (2), pp. 927957.
    14. 14)
      • 14. Pant, J., Lu, W., Antoniou, A.: ‘New improved algorithms for compressive sensing based on LP norm’, IEEE Trans. Circuits Syst. II, Express Briefs, 2014, 61, (3), pp. 198202.
    15. 15)
      • 15. Zhang, T.: ‘Analysis of multi-stage convex relaxation for sparse regularization’, J. Mach. Learn. Res., 2010, 11, pp. 10811107.
    16. 16)
      • 16. Zhang, T.: ‘Multi-stage convex relaxation for feature selection’, Bernoulli. (Andover), 2013, 19, (5B), pp. 22772293.
    17. 17)
      • 17. Gong, P., Ye, J., Zhang, C.: ‘Robust multi-task feature learning’. Proc. Int. Conf. Knowledge Discovery and Data mining, 2012, Beijing, China, pp. 895903.
    18. 18)
      • 18. Zhang, S., Qian, H., Chen, W., et al: ‘A concave conjugate approach for nonconvex penalized regression with the MCP penalty’. AAAI Conf. on Artificial Intelligence, Bellevue, Washington, 2013, pp. 10271033.
    19. 19)
      • 19. Lou, Y., Yin, P., He, Q., et al: ‘Computing sparse representation in a highly coherent dictionary based on difference of L1 and L2’, J. Sci. Comput., 2015, 64, (1), pp. 178196.
    20. 20)
      • 20. Lou, Y., Yan, M.: ‘Fast L1–L2 minimization via a proximal operator’, J. Sci. Comput., 2017, 74, (2), pp. 119.
    21. 21)
      • 21. Zhou, Y.Y., Ye, Z.F., Huang, J.J.: ‘Improved decision-based detail-preserving variational method for removal of random-valued impulse noise’, IET Image Process., 2012, 6, (7), pp. 976985.
    22. 22)
      • 22. Bar, L., Brook, A., Sochen, N., et al: ‘Deblurring of color images corrupted by impulsive noise’, IEEE Trans. Image Process., 2007, 16, (4), pp. 11011111.
    23. 23)
      • 23. Pham, D., Venkatesh, S.: ‘Improved image recovery from compressed data contaminated with impulsive noise’, IEEE Trans. Image Process., 2012, 21, (1), pp. 397405.
    24. 24)
      • 24. Pham, D., Venkatesh, S.: ‘Efficient algorithms for robust recovery of images from compressed data’, IEEE Trans. Image Process., 2013, 22, (12), pp. 47244737.
    25. 25)
      • 25. Wen, F., Liu, P., Liu, Y., et al: ‘Robust sparse recovery for compressive sensing in impulsive noise using ℓp-norm model fitting’. Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 46434647.
    26. 26)
      • 26. Wen, F., Liu, P., Liu, Y., et al: ‘Robust sparse recovery in impulsive noise via LP-L1 optimization’, IEEE Trans. Signal Process., 2017, 65, (1), pp. 105118.
    27. 27)
      • 27. Huber, P.J.: ‘Robust statistics’ (Wiley, New York, 1981).
    28. 28)
      • 28. Thi, L., Dinh, T., Le, H., et al: ‘DC approximation approaches for sparse optimization’, Eur. J. Oper. Res., 2015, 244, (1), pp. 2646.
    29. 29)
      • 29. Tao, P.: ‘The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems’, Ann. Oper. Res., 2005, 133, (1-4), pp. 2346.
    30. 30)
      • 30. Le, T., Dinh, T., Van, N.: ‘Exact penalty and error bounds in DC programming’, J. Glob. Optim., 2012, 52, (3), pp. 509535.
    31. 31)
      • 31. Lou, Y., Zeng, T., Osher, S., et al: ‘A weighted difference of anisotropic and isotropic total variation model for image processing’, SIAM J. Imaging Sci., 2015, 8, (3), pp. 17981823.
    32. 32)
      • 32. Yin, P., Lou, Y., He, Q., et al: ‘Minimization of L1-2 for compressed sensing’, SIAM J. Sci. Comput., 2015, 37, (1), pp. 536563.
    33. 33)
      • 33. Tono, K., Takeda, A., Gotoh, J.: ‘Efficient DC algorithm for constrained sparse optimization’, arXiv preprint, 2017, arXiv:1701.08498.
    34. 34)
      • 34. Wen, B., Chen, X., Pong, T.: ‘A proximal difference-of-convex algorithm with extrapolation’, Computational optimization and applications2018, 69, (2), pp. 297324.
    35. 35)
      • 35. Selesnick, I., Farshchian, M.: ‘Sparse signal approximation via non-separable regularization’, IEEE Trans. Signal Process., 2017, 65, (10), pp. 25612575.
    36. 36)
      • 36. Selesnick, I.: ‘Sparse regularization via convex analysis’, IEEE Trans. Signal Process., 2017, 65, (17), pp. 44814494.
    37. 37)
      • 37. Nesterov, Y.: ‘Gradient methods for minimizing composite functions’, Math. Program., 2013, 140, (1), pp. 125161.
    38. 38)
      • 38. Gong, P., Zhang, C., Lu, Z., et al: ‘A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems’. Proc. Int. Conf. Machine Learning, Atlanta, Georgia, 2013, pp. 3745.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2018.5130
Loading

Related content

content/journals/10.1049/iet-spr.2018.5130
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address