http://iet.metastore.ingenta.com
1887

Two novel sensor control schemes for multi-target tracking via delta generalised labelled multi-Bernoulli filtering

Two novel sensor control schemes for multi-target tracking via delta generalised labelled multi-Bernoulli filtering

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The study addresses the sensor control problem for multi-target tracking via delta generalised labelled multi-Bernoulli (-GLMB) filter, and proposes two novel single-sensor control schemes. One is that the Rényi divergence is used as the objective function to measure the information gain between the predicted and posterior densities of the -GLMB filter, and it is superior for the overall performance of the system. Since most of the sensor control schemes, including the scheme the authors proposed, are faced the curse of computation, thus the other novel scheme is proposed. This scheme, in which the sum of the statistical distances between the predicted states of targets and sensor is used as the objective function, evades the updated step of the multi-target filter, when computing the objective function for each admissible action. Moreover, these two sensor control schemes are applied to a distributed multi-sensor system, in which the proposed schemes are used for each sensor node and the generalised covariance intersection method is used to compute the fused multi-target posterior density. Finally, they adopt the sequential Monte-Carlo method in bearing and range multi-target tracking scenarios to illustrate the effectiveness of the proposed methods.

References

    1. 1)
      • 1. Hero, A.O., Castañón, D., Cochran, D., et al: ‘Foundations and applications of sensor management’ (Springer, New York, 2008).
    2. 2)
      • 2. Lovejoy, W.S.: ‘A survey of algorithmic methods for partially observed Markov decision processes’, Ann. Oper. Res., 1991, 28, (1), pp. 4765.
    3. 3)
      • 3. Krishnamurthy, V.: ‘Algorithms for optimal scheduling and management of hidden Markov model sensors’, IEEE Trans. Signal Process., 2002, 50, (6), pp. 13821397.
    4. 4)
      • 4. Hero, A.O., Kreucher, C.M., Blatt, D.: ‘Information theoretic approaches to sensor management’, in Hero, A.O., Castañón, D., Cochran, D., et al: ‘Foundations and applications of sensor management’ (Springer, New York, 2008), pp. 3357.
    5. 5)
      • 5. Mahler, R.: ‘Statistical multisource-multitarget information fusion’ (Artech House, Norwood, MA, USA, 2007).
    6. 6)
      • 6. Mahler, R.: ‘Advances in statistical multisource-multitarget information fusion’ (Artech House, Norwood, MA, USA, 2014).
    7. 7)
      • 7. Vo, B.N., Ma, W.K.: ‘The Gaussian mixture probability hypothesis density filter’, IEEE Trans. Signal Process., 2006, 54, (11), pp. 40914104.
    8. 8)
      • 8. Mahler, R.: ‘PHD filters of higher order in target number’, IEEE Trans. Aerosp. Electron. Syst., 2008, 43, (4), pp. 15231543.
    9. 9)
      • 9. Vo, B.T., Vo, B.N., Cantoni, A.: ‘The cardinality balanced multi-target multi-Bernoulli filter and its implementations’, IEEE Trans. Signal Process., 2009, 57, (2), pp. 409423.
    10. 10)
      • 10. Vo, B.T., Vo, B.N.: ‘Labeled random finite sets and multi-object conjugate priors’, IEEE Trans. Signal Process., 2013, 61, (13), pp. 34603475.
    11. 11)
      • 11. Vo, B.N., Vo, B.T., Phung, D.: ‘Labeled random finite sets and the Bayes multi-target tracking filter’, IEEE Trans. Signal Process., 2014, 62, (24), pp. 65546567.
    12. 12)
      • 12. Ristic, B.: ‘Particle filters for random set models’ (Springer, New York, 2013).
    13. 13)
      • 13. Mullane, J., Vo, B.N., Adams, M., et al: ‘Random finite sets for robot mapping and SLAM’ (Springer, Berlin Heidelberg, 2011).
    14. 14)
      • 14. Zhang, G.H., Lian, F., Han, C.Z., et al: ‘Convergence analysis for the Gaussian mixture implementation of the CBMeMBer filter’, Control Theory Appl., 2016, 33, (10), pp. 14051411.
    15. 15)
      • 15. Zhang, G.H., Han, C.Z., Lian, F., et al: ‘Cardinality balanced multi-target multi-Bernoulli filter for pairwise Markov model’, ACTA Automat. Sin., 2017, 43, (12), pp. 21002108.
    16. 16)
      • 16. Gostar, A.K., Hoseinnezhad, R., Bab-Hadiashar, A.: ‘Robust multi-Bernoulli sensor selection for multi-target tracking in sensor networks’, IEEE Signal Process. Lett., 2013, 20, (12), pp. 11671170.
    17. 17)
      • 17. Gostar, A.K., Hoseinnezhad, R., Bab-Hadiashar, A.: ‘Multi-Bernoulli sensor control for multi-target tracking’. Proc. IEEE Int. Conf. Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, VIC, Australia, April 2013, pp. 312317.
    18. 18)
      • 18. Gostar, A.K., Hoseinnezhad, R., Bab-Hadiashar, A.: ‘Control of sensor with unknown clutter and detection profile using multi-Bernoulli filter’. Proc. Int. Conf. Information Fusion, Istanbul, Turkey, July 2013, pp. 10211028.
    19. 19)
      • 19. Gostar, A.K., Hoseinnezhad, R., Bab-Hadiashar, A.: ‘Sensor control for multi-object tracking using labeled multi-Bernoulli filter’, IEEE Trans. Signal Process., 2014, 63, (20), pp. 18.
    20. 20)
      • 20. Kampa, K., Hasanbelliu, E., Principe, J.C.: ‘Closed-form Cauchy-schwarz PDF divergence for mixture of gaussians’. Proc. Int. Joint Conf. Neural Networks, San Jose, CA, USA, July–August 2011, pp. 25782585.
    21. 21)
      • 21. Hoang, H.G., Vo, B.N., Ba, T.V., et al: ‘The Cauchy-Schwarz divergence for Poisson point processes’, IEEE Trans. Inf. Theory, 2015, 61, (8), pp. 240243.
    22. 22)
      • 22. Mahler, R.: ‘Multitarget sensor management of dispersed mobile sensors’, in Grundel, D., Murphey, R., Pardalos, P.M.: ‘Theory and algorithms for cooperative systems’ (World Scientific, River Edge, New Jersey, 2004), pp. 239310.
    23. 23)
      • 23. Ristic, B., Vo, B.T.: ‘Sensor control for multi-object state-space estimation using random finite sets’, Automatica, 2010, 46, (11), pp. 18121818.
    24. 24)
      • 24. Ristic, B., Vo, B.N., Clark, D.: ‘A note on the reward function for PHD filters with sensor control’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (2), pp. 15211529.
    25. 25)
      • 25. Hoang, H.G., Ba, T.V.: ‘Sensor management for multi-target tracking via multi-Bernoulli filtering’, Automatica, 2014, 50, (4), pp. 11351142.
    26. 26)
      • 26. Kreucher, C., Hero, A.O., Kastella, K.: ‘A comparison of task driven and information driven sensor management for target tracking’. Proc. 44th IEEE Conf. Decision and Control, Seville, Spain, December 2005, pp. 40044009.
    27. 27)
      • 27. Jiang, M., Yi, W., Kong, L.: ‘Multi-sensor control for multi-target tracking using Cauchy-schwarz divergence’. Proc. Int. Conf. Information Fusion, Heidelberg, Germany, July 2016, pp. 20592066.
    28. 28)
      • 28. Wang, X., Hoseinnezhad, R., Gostar, A.K., et al: ‘Multi-sensor control for multi-object Bayes filters’, Signal Process., 2018, 142, pp. 260270, doi: 10.1016/j.sigpro.2017.07.031.
    29. 29)
      • 29. Fantacci, C., Vo, B.N., Vo, B.T., et al: ‘Consensus labeled random finite set filtering for distributed multi-object tracking’, 2015, preprint available online at arXiv:1501.01579v2, http://arxiv.org/abs/1501.01579.
    30. 30)
      • 30. Battistelli, G., Chisci, L., Fantacci, C., et al: ‘Distributed fusion of multitarget densities and consensus PHD/CPHD filters’. Proc. SPIE, Signal Processing, Sensor/Information Fusion, and Target Recognition, Baltimore, MD, USA, April 2015, pp. 115.
    31. 31)
      • 31. Battistelli, G., Chisci, L., Fantacci, C., et al: ‘Consensus CPHD filter for distributed multitarget tracking’, IEEE J. Sel. Topics Signal Process., 2013, 7, (3), pp. 508520.
    32. 32)
      • 32. Wang, B., Yi, W., Hoseinnezhad, R., et al: ‘Distributed fusion with multi-Bernoulli filter based on generalized covariance intersection’, IEEE Trans. Signal Process., 2015, 65, (1), pp. 242255.
    33. 33)
      • 33. Beard, M., Vo, B.T., Vo, B.N., et al: ‘Sensor control for multi-target tracking using Cauchy-schwarz divergence’. Proc. Int. Conf. Information Fusion, Washington, DC, USA, July 2015, pp. 937944.
    34. 34)
      • 34. Vo, B.N., Vo, B.T., Hoang, H.G.: ‘An efficient implementation of the generalized labeled multi-Bernoulli filter’, IEEE Trans. Signal Process., 2017, 65, (8), pp. 19751987.
    35. 35)
      • 35. Schuhmacher, D., Vo, B.T., Vo, B.N.: ‘A consistent metric for performance evaluation of multi-object filters’, IEEE Trans. Signal Process., 2008, 56, (8), pp. 34473457.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2018.5124
Loading

Related content

content/journals/10.1049/iet-spr.2018.5124
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address