access icon free Sparse representation via optimal matching convolution framelets

Recently, a tight frame, called convolution framelets (CFs) and constructed by convolving local and non-local bases, is proposed to provide valuable insights in understanding the patch-based processing approaches in the viewpoint of sparse representation (SR). However, it is still unclear how to represent signals with energy concentration guarantee in its lifted space and how to optimise the local base for a given non-local base. To address these issues, the equivalence between the signal space and its lifted space is established by the Hankel operator. In the lifted space, the energy concentration property of signals is measured by the sparsity instead of the Euclidean norm and the rank. With the new objective function, an optimisation model is built to train the optimal local base for a given nonlocal base from the training samples, motivating us to propose the optimal matching convolution framelets (OMCFs). In addition, a numerical algorithm is also designed to solve the proposed model using alternating optimisation strategy. The OMCF for SR is tested on the speech signals, and the comparisons with traditional popular SR tools, such as discrete cosine transform (DCT) and Haar wavelets, demonstrate its better performance.

Inspec keywords: speech processing; Hankel matrices; signal representation; convolution; optimisation

Other keywords: optimisation model; signal space; signal representation; energy concentration property; sparse representation; nonlocal basis; energy concentration; patch-based processing approaches; objective function; local basis; alternating optimisation strategy; speech signals; numerical algorithm; Hankel operator; optimal matching convolution framelets; OMCF

Subjects: Linear algebra (numerical analysis); Optimisation techniques; Speech processing techniques; Linear algebra (numerical analysis); Optimisation techniques; Speech and audio signal processing

References

    1. 1)
      • 51. Eldèn, L., Park, H.: ‘A procrustes problem on the Stiefel manifold’, Numer. Math., 1999, 82, (4), pp. 599619.
    2. 2)
      • 44. Hsu, D., Kakade, S. M., Zhang, T.: ‘Robust matrix decomposition with sparse corruptions’, IEEE Trans. Inf. Theory, 2011, 57, (11), pp. 72217234.
    3. 3)
      • 25. Lee, A. B., Izbicki, R.: ‘A spectral series approach to high-dimensional nonparametric regression’, Electron. J. Stat., 2016, 10, (1), pp. 423463.
    4. 4)
      • 27. Izbicki, R., Lee, A. B.: ‘Nonparametric conditional density estimation in a high-dimensional regression setting’, J. Comput. Graph. Statist., 2016, 25, (4), pp. 12971316.
    5. 5)
      • 10. Pennebaker, W. B., Mitchell, J. L.: ‘JPEG still image compression data standard’ (Van Nostrand Reinhold, New York, 1992).
    6. 6)
      • 39. Ying, J., et al: ‘Hankel matrix nuclear norm regularized tensor completion for N-dimensional exponential signals’, IEEE Trans. Signal Process., 2017, 65, (14), pp. 37023717.
    7. 7)
      • 6. Wang, Z., Tan, X., Yu, Q., et al: ‘Sparse PDE for SAR image speckle suppression’, IET Image Process.., 2017, 11, (6), pp. 425432.
    8. 8)
      • 13. Aharon, M., Elad, M., Bruckstein, A.: ‘K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation’, IEEE Trans. Signal Process., 2006, 54, (11), pp. 43114322.
    9. 9)
      • 33. Osher, S., Shi, Z., Zhu, W.: ‘Low dimensional manifold model for image processing’. Technical Report, CAM report 16-04, UCLA, Los Angeles, CA, 2016.
    10. 10)
      • 20. Dabov, K., Foi, A., Katkovnik, V., et al: ‘Image denoising by sparse 3-D transform- domain collaborative filtering’, IEEE Trans. Image Process., 2007, 16, (8), pp. 20802095.
    11. 11)
      • 31. Jin, K. H., Lee, J., Lee, D., et al: ‘Sparse and low-rank decomposition of MR artifact images using annihilating filter-based Hankel matrix’. IEEE Int. Symp. Biomedical Imaging, Prague, Czech Republic, 2016, pp. 13881391.
    12. 12)
      • 48. Osher, S., Mao, Y., Dong, B., et al: ‘Fast linearized Bregman iteration for compressive sensing and sparse denoising’, Math. Comput., 2010, 8, (1), pp. 93111.
    13. 13)
      • 3. Wohlberg, B.: ‘Efficient algorithm for convolutional sparse representations’, IEEE Trans. Image Process., 2016, 25, (1), pp. 301315.
    14. 14)
      • 41. Fornasier, M., Rauhut, H.: ‘Compressive sensing’, ‘Handbook of mathematical methods in imaging’ (Springer-Verlag, New York, 2011), vol. 56, issue 4, sec. iv-v.
    15. 15)
      • 8. Zhang, L., Xu, X., Chen, H., et al: ‘Supervised single-channel speech dereverberation and denoising using a two-stage model based sparse representation’, Speech Commun., 2018, 97, pp. 18.
    16. 16)
      • 40. Trigano, T., Shevtsova, I., Luengo, D.: ‘Cosa: an accelerated ISTA algorithm for dictionaries based on translated waveforms’, Signal Process., 2017, 139, pp. 131135.
    17. 17)
      • 12. Selesnick, I., Baraniuk, R., Kingsbury, N.: ‘The dual-tree complex wavelet transform’, IEEE Signal Process. Mag., 2005, 22, (6), pp. 123151.
    18. 18)
      • 7. Li, W., Zhou, Y., Poh, N., et al: ‘Feature denoising using joint sparse representation for incar speech recognition’, IEEE Signal Process. Lett., 2013, 20, (7), pp. 681684.
    19. 19)
      • 1. Bruckstein, A. M., Donoho, D. L., Elad, M.: ‘From sparse solutions of systems of equations to sparse modeling’, SIAM Rev.., 2009, 51, (1), pp. 3481.
    20. 20)
      • 21. Chatterjee, P., Milanfar, P.: ‘Patch-based near-optimal image denoising’, IEEE Trans. Image Process., 2012, 21, (4), pp. 16351649.
    21. 21)
      • 32. Bruna, J., Mallat, S.: ‘Invariant scattering convolution networks’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (8), pp. 18721886.
    22. 22)
      • 22. Kheradmand, A., Milanfar, P.: ‘A general framework for regularized, similarity-based image restora- tion’, IEEE Trans. Image Process., 2014, 23, (12), pp. 51365151.
    23. 23)
      • 18. Buades, A., Coll, B., Morel, J. M.: ‘A non-local algorithm for image denoising’. IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR), IEEE, Washington, DC, 2005, vol. 2, pp. 6065.
    24. 24)
      • 24. Bougleux, S., Cohen, L. D., Peyré, G.: ‘Non-local regularization of inverse problems’, Inverse Probl. Imag., 2017, 5, (2), pp. 511530.
    25. 25)
      • 43. Chandrasekaran, V., Sanghavi, S., Parrilo, P. A., et al: ‘Rank-sparsity incoherence for matrix decomposition’, SIAM J. Optim., 2009, 21, (2), pp. 572596.
    26. 26)
      • 15. Sahoo, S. K., Makur, A.: ‘Sparse sequential generalization of K-means for dictionary training on noisy signals’, Signal Process., 2016, 129, pp. 6266.
    27. 27)
      • 49. Donoho, D. L., Maleki, A., Montanari, A.: ‘Message-passing algorithms for compressed sensing’, Proc. Natl. Acad. Sci. USA, 2009, 106, (45), pp. 1891418919.
    28. 28)
      • 50. Schönemann, P. H.: ‘A generalized solution of the orthogonal procrustes problem’, Psychometrika, 1966, 31, (1), pp. 110.
    29. 29)
      • 14. Lesage, S., Gribonval, R., Bimbot, F., et al: ‘Learning unions of orthonormal bases with thresholded singular value decomposition’. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Philadelphia, PA, USA, 2005, v, pp. 293296.
    30. 30)
      • 45. Boyd, S., Parikh, N., Chu, E., et al: ‘Distributed optimization and statistical learning via the alternating direction method of multipliers’, Found. Trends Mach. Learn., 2011, 3, (1), pp. 1122.
    31. 31)
      • 37. Kang, E., Yoo, J., Ye, J. C.: ‘Wavelet residual network for low-dose CT via deep convolutional framelets’, arXiv:1707.09938v2, 2017.
    32. 32)
      • 46. Hong, M., Luo, Z. Q.. ‘On the linear convergence of the alternating direction method of multipliers’, Math. Program., 2017, 162, (1-2), pp. 165199.
    33. 33)
      • 17. Rudin, I. L., Osher, S., Fatemi, E.: ‘Nonlinear total variation based noise removal algorithm’, Physica D, 1992, 60, pp. 259268.
    34. 34)
      • 38. Yang, J., Lu, H., Wei, Q., et al: ‘Compressive sampling using annihilating filter-based low-rank interpolation’, IEEE Trans. Inf. Theory, 2017, 63, (2), pp. 777801.
    35. 35)
      • 5. Xiong, J., Liu, Q., Wang, Y., et al: ‘A two-stage convolutional sparse prior model for image restoration’, J. Vis. Commun. Image Represent., 2017, 48, pp. 268280.
    36. 36)
      • 30. Jin, K. H., Ye, J. C.: ‘Annihilating filter-based low-rank Hankel matrix approach for image inpainting’, IEEE Trans. Image Process., 2015, 24, (11), pp. 34983511.
    37. 37)
      • 26. Eslahi, N., Aghagolzadeh, A.: ‘Compressive sensing image restoration using adaptive curvelet thresholding and nonlocal sparse regularization’, IEEE Trans. Image Process., 2016, 25, (7), pp. 31263140.
    38. 38)
      • 11. Mallat, S. G.: ‘A theory for multi-resolution signal decomposition: the wavelet representation’, IEEE Trans. Pattern Anal. Mach. Intell., 1989, 11, (7), pp. 674693.
    39. 39)
      • 9. Messaoud, M., Bouzid, A.: ‘Sparse representations for single channel speech enhancement based on voiced/unvoiced classification’, Circ. Syst. Signal Process., 2017, 36, (5), pp. 122.
    40. 40)
      • 34. Yin, R., Gao, T., Lu, Y. M., et al: ‘A tale of two bases: local-nonlocal regularization on image patches with convolution framelets’, SIAM J. Imag. Sci., 2017, 10, (2), pp. 711750.
    41. 41)
      • 47. Hale, E. T., Yin, W., Zhang, Y.: ‘Fixed-point continuation for 1 minimization: methodology and convergence’, SIAM J. Optim., 2008, 19, (3), pp. 11071130.
    42. 42)
      • 4. Liu, D., Wang, Z., Wen, B., et al: ‘Robust single image super-resolution via deep networks with sparse prior’, IEEE Trans. Image Process., 2016, 25, (7), pp. 31943207.
    43. 43)
      • 2. Wright, J., Ma, Y., Mairal, J., et al: ‘Sparse representation for computer vision and pattern recognition’, Proc. IEEE, 2010, 98, (6), pp. 10311044.
    44. 44)
      • 36. Ye, J. C., Han, Y. S.: ‘Deep convolutional framelets: a general deep learning for inverse problems’, arXiv:1707.00372v3, 2017.
    45. 45)
      • 35. Yin, R.: ‘High dimensional signal representation’. PhD Thesis, Duke University, Durham, North Carolina, USA, 2017.
    46. 46)
      • 16. Baraniuk, R., Wakin, M.: ‘Random projections of smooth manifold’, Found. Comput. Math., 2009, 9, (1), pp. 5177.
    47. 47)
      • 42. Candes, E. J., Wakin, M. B.: ‘An introduction to compressive sampling’, IEEE Signal Process. Mag., 2008, 25, (2), pp. 2130.
    48. 48)
      • 28. Chatterjee, P., Milanfar, P.: ‘Clustering-based denoising with locally learned dictionaries’, IEEE Trans. Image Process., 2009, 18, (7), pp. 14381451.
    49. 49)
      • 23. Taylor, K. M., Meyer, F. G.: ‘A random walk on image patches’, SIAM J. Image Sci., 2011, 5, (2), pp. 688725.
    50. 50)
      • 29. Elad, M., Aharon, M.: ‘Image denoising via sparse and redundant representations over learned dictionaries’, IEEE Trans. Image Process., 2006, 15, (12), pp. 37363745.
    51. 51)
      • 19. Buades, A., Coll, B., Morel, J. M.: ‘A review of image denoising algorithms, with a new one’, SIAM J. Multiscale Model. Simul., 2005, 4, (2), pp. 490530.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2018.5108
Loading

Related content

content/journals/10.1049/iet-spr.2018.5108
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading