Deep neural network based approach for ECG classification using hybrid differential features and active learning

Deep neural network based approach for ECG classification using hybrid differential features and active learning

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A novel active learning-based electrocardiogram (ECG) signal classification method using eigenvalues and deep learning is proposed. Six statistical features relating to ECG beat intervals are calculated separately for each heartbeat. Both statistical features and eigenvalues of ECG beats are combined into a single feature vector. The eigenvalues of ECG beats are used as an input to denoising autoencoder (DAE). Weighted ECG beat intervals are calculated by using ten-fold cross-validation approach. To learn an efficient feature representation from the hybrid feature vector, DAE is used in an unsupervised way. After completing the feature learning procedure, a softmax regression layer is added on the top of the resulting hidden layer of DAE, and thus a suitable deep neural network (DNN) architecture is built. The learned features obtained from the autoencoder layers are fed to the softmax regression layer for classification. To update weights of the proposed eigenvalues-based DNN model, ECG beats are labelled by the medical expert are used. In order to determine the most informative beats, entropy and Breaking-Ties are also used as selection criteria. The proposed method is evaluated in terms of ECG beats classes. The classification performance of the authors’ proposed model is also compared with the several conventional machine learning classifiers.


    1. 1)
      • 1. Vafaie, M.H., Ataei, M., Koofigar, H.R.: ‘Heart diseases prediction based on ECG signals’ classification using a genetic-fuzzy system and dynamical model of ECG signals’, Biomed. Signal Process. Control, 2014, 14, pp. 291296.
    2. 2)
      • 2. Alajlan, N., Bazi, Y., Melgani, F., et al: ‘Detection of premature ventricular contraction arrhythmias in electrocardiogram signals with kernel methods’, Signal, Image Video Process., 2014, 8, (5), pp. 931942.
    3. 3)
      • 3. Homaeinezhad, M.R., Atyabi, S.A., Tavakkoli, E., et al: ‘ECG arrhythmia recognition via a neuro-SVM-KNN hybrid classifier with virtual QRS image-based geometrical features’, Expert Syst. Appl., 2012, 39, pp. 20472058.
    4. 4)
      • 4. Kim, T.-H., Kim, S.-Y., Kim, J.-H., et al: ‘Curvature based ECG signal compression for effective communication on WPAN’, J. Commun. Netw., 2012, 14, (1), pp. 2126.
    5. 5)
      • 5. deChazal, P., O'Dwyer, M., Reilly, R.B.: ‘Automatic classification of heartbeats using ECG morphology and heartbeat interval features’, IEEE Trans. Biomed. Eng., 2004, 51, (7), pp. 11961206.
    6. 6)
      • 6. de Chazal, P., Reilly, R.B.: ‘A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features’, IEEE Trans. Biomed. Eng., 2006, 53, (12), pp. 25352543.
    7. 7)
      • 7. Monasterio, V., Laguna, P., Martinez, J.P.: ‘Multilead analysis of T-wave alternans in the ECG using principal component analysis’, IEEE Trans. Biomed. Eng., 2009, 56, (7), pp. 18801890.
    8. 8)
      • 8. Martis, R.J., Rajendra Acharya, U., Mandana, K.M., et al: ‘Application of principal component analysis to ECG signals for automated diagnosis of cardiac health’, Expert Syst. Appl., 2012, 39, (14), pp. 1179211800.
    9. 9)
      • 9. Pan, S.-T., Wu, Y.-H., Kung, Y.-L., et al: ‘Heartbeat recognition from ECG signals using hidden Markov model with adaptive features’. ‘2013 14th ACIS Int. Conf. on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing’, 2013, pp. 586591.
    10. 10)
      • 10. Milchevski, A., Gusev, M.: ‘Improve d pipeline d wavelet implementation for filtering ECG signals’, Pattern Recognit. Lett., 2017, 95, pp. 8590.
    11. 11)
      • 11. Li, C., Zheng, C., Tai, C.: ‘Detection of ECG characteristic points using wavelet transforms’, IEEE Trans. Biomed. Eng., 1995, 42, (1), pp. 2128.
    12. 12)
      • 12. Minami, K., Nakajima, H., Toyoshima, T.: ‘Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network’, IEEE Trans. Biomed. Eng., 1999, 46, (2), pp. 179185.
    13. 13)
      • 13. Yildiz, A., Akın, M., Poyraz, M.: ‘An expert system for automated recognition of patients with obstructive sleep apnea using electrocardiogram recordings’, Expert Syst. Appl., 2011, 38, (10), pp. 1288012890.
    14. 14)
      • 14. Khorrami, H., Moavenian, M.: ‘A comparative study of DWT, CWT and DCT transformations in ECG arrhythmias classification’, Expert Syst. Appl., 2010, 37, (8), pp. 57515757.
    15. 15)
      • 15. Zhang, Z., Dong, J., Luo, X., et al: ‘Heartbeat classification using disease-specific feature selection’, Comput. Biol. Med., 2014, 46, pp. 7989.
    16. 16)
      • 16. San, P.P., Ling, S.H., Nuryani Nguyen, H.: ‘Evolvable rough-block-based neural network and its biomedical application to hypoglycemia detection system’, IEEE Trans. Cybern., 2014, 44, (8), pp. 13381349.
    17. 17)
      • 17. Jiang, W., Seong Kong, G.: ‘Block-based neural networks for personalized ECG signal classification’, IEEE Trans. Neural Netw., 2007, 18, (6), pp. 17501761.
    18. 18)
      • 18. Hu, Y.H., Palreddy, S., Tompkins, W.J.: ‘A patient-adaptable ECG beat classifier using a mixture of experts approach’, IEEE Trans. Biomed. Eng., 1997, 44, (9), pp. 891900.
    19. 19)
      • 19. Ince, T., Kiranyaz, S., Gabbouj, M.: ‘A generic and robust system for automated patient-specific classification of ECG signals’, IEEE Trans. Biomed. Eng., 2009, 56, (5), pp. 14151426.
    20. 20)
      • 20. Yücelbaş, Ş., Yücelbaş, C., Tezel, G., et al: ‘Pre-determination of OSA degree using morphological features of the ECG signal’, Expert Syst. Appl., 2017, 81, pp. 7987.
    21. 21)
      • 21. Zia, M., Rahman, U., Shaik, R.A., et al: ‘Efficient sign based normalized adaptive filtering techniques for cancelation of artifacts in ECG signals: application to wireless biotelemetry’, Signal Process., 2010, 91, pp. 225239.
    22. 22)
      • 22. Hinton, G.E., Salakhutdinov, R.R.: ‘Reducing the dimensionality of data with neural networks’, Science, 2006, 313, (5786), pp. 504507.
    23. 23)
      • 23. Swietojanski, P., Ghoshal, A., Renals, S.: ‘Convolutional neural networks for distant speech recognition’, IEEE Signal Process. Lett., 2014, 21, (9), pp. 11201124.
    24. 24)
      • 24. Huang, F.J., LeCun, Y.: ‘Large-scale learning with SVM and convolutional for generic object categorization’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2006, pp. 284291.
    25. 25)
      • 25. Hinton, G.E., Osindero, S., Teh, Y.-W.: ‘A fast learning algorithm for deep belief nets’, Neural Comput., 2006, 18, (7), pp. 15271554.
    26. 26)
      • 26. Cecotti, H., Graser, A.: ‘Convolutional neural networks for P300 detection with application to brain-computer interfaces’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (3), pp. 433445.
    27. 27)
      • 27. Al Rahhal, M.M., Bazi, Y., Alhichri, H., et al: ‘Deep learning approach for active classification of electrocardiogram signals’, Inf. Sci. (Ny), 2016, 345, pp. 340354.
    28. 28)
      • 28. Bu, S., Han, P., Liu, Z., et al: ‘Local deep feature learning framework for 3D shape’, Comput. Graph., 2014, 46, pp. 117129.
    29. 29)
      • 29. Brosch, T., Tam, R.: ‘Efficient training of convolutional deep belief networks in the frequency domain for application to high-resolution 2D and 3D images’, Neural Comput., 2015, 27, (1), pp. 211227.
    30. 30)
      • 30. Pourbabaee, B., Roshtkhari, M.J., Khorasani, K.: ‘Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients’, IEEE Trans. Syst. Man Cybern. Syst., 2017, doi: 10.1109/TSMC.2017.2705582, early access.
    31. 31)
      • 31. Kukelova, Z., Bujnak, M., Pajdla, T.: ‘Polynomial eigenvalue solutions to minimal problems in computer vision’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (7), pp. 13811393.
    32. 32)
      • 32. Morgado, E., Alonso-Atienza, F., Santiago-Mozos, R., et al: ‘Quality estimation of the electrocardiogram using cross-correlation among leads’, Biomed. Eng., 2015, 14, p. 59.
    33. 33)
      • 33. Zhang, J., Zhao, H., Liang, J.: ‘Continuous rotation invariant local descriptors for texton dictionary-based texture classification’, Comput. Vis. Image Underst., 2013, 117, pp. 5675.
    34. 34)
      • 34. Sharma, R.R., Pachori, R.B.: ‘Baseline wander and power line interference removal from ECG signals using eigenvalue decomposition’, Biomed. Signal Process. Control, 2018, 45, pp. 3349.
    35. 35)
      • 35. Freeman, W.T., Adelson, E.H.: ‘The design and use of steerable filters’, IEEE Trans. Pattern Anal. Mach. Intell., 1991, 13, (9), pp. 891906.
    36. 36)
      • 36. Carmo, M.: ‘Differential geometry of curves and Surfaces’ (Prentice-Hall, Englewood Cliffs, NJ, 1976).
    37. 37)
      • 37. Liu, D.C., Nocedal, J.: ‘On the limited memory BFGS method for large scale optimization’, Math. Program., 1989, 45, (1–3), pp. 503528.
    38. 38)
      • 38. Zhang, C., Wang, G., Zhao, J., et al: ‘Patient-specific ECG classification based on recurrent neural networks and clustering technique’. Int. Conf. on Biomedical Engineering ACTAPRESS, 2017, pp. 6367.
    39. 39)
      • 39. Chen, S., Hua, W., Li, Z., et al: ‘Heartbeat classification using projected and dynamic features of ECG signal’, Biomed. Signal Process. Control, 2017, 31, pp. 165173.
    40. 40)
      • 40. Huang, S.-J., Jin, R., Zhou, Z.-H.: ‘Active learning by querying informative and representative examples’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (10), pp. 19361949.
    41. 41)
      • 41. Hu, R., Mac Namee, B., Delany, S.J.: ‘Active learning for text classification with reusability’, Expert Syst. Appl., 2016, 45, pp. 438449.
    42. 42)
      • 42. Luo, T., Kramer, K., Goldgof, D.B., et al: ‘Active learning to recognize multiple types of plankton’, J. Mach. Learn. Res., 2005, 6, pp. 589613.
    43. 43)
      • 43. Wang, X., Wen, J., Alam, S., et al: ‘Semi-supervised learning combining transductive support vector machine with active learning’, Neurocomputing, 2016, 173, pp. 12881298.
    44. 44)
      • 44. Mark, R., Schluter, P., Moody, G., et al: ‘An annotated ECG database for evaluating arrhythmia detectors. Frontiers of engineering in health care’. Proc. 4th Annual Conf. IEEE Engineering in Medicine and Biology Society, 1982, pp. 205210.
    45. 45)
      • 45. Bengio, Y.: ‘Practical recommendations for gradient-based training of deep architectures’, in ‘Lecture notes in computer science’ (Springer, Berlin, Heidelberg, 2012), pp. 437478.

Related content

This is a required field
Please enter a valid email address