CLEAN-based air moving target detection for the SFM radar-communication system

CLEAN-based air moving target detection for the SFM radar-communication system

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Space–frequency modulation (SFM) signal is a potential waveform for multifunction radar with high degrees of freedom of space, time, and frequency. However, the introduction of the additional communication function will modulate the transmitting signal, which will severely deteriorate the autocorrelation function (ACF). Here, a modified CLEAN method is proposed to eliminate the influence of undesired sidelobes in ACF on the air target detection. In the proposed method, undesired sidelobes are treated as extra features of real target to obtain more precise estimation of its complex reflection coefficient. Moreover, by considering about the sparsity of air targets, the authors employ the sparse representation method to estimate the response of the current strongest target. Then the target occlusion is eliminated by iterative cancellation. Simulation results demonstrate that the proposed detector is reliable and effective for the SFM-based integrated system.


    1. 1)
      • 1. Tavik, G.C., Hilterbrick, C.L., Evins, J.B., et al: ‘The advanced multifunction RF concept’, IEEE Trans. Microw. Theory Tech., 2005, 53, (3), pp. 10091020.
    2. 2)
      • 2. Takahara, H., Ohno, K., Itami, M.: ‘A study on UWB radar assisted by inter-vehicle communication for safety applications’. IEEE Int. Conf. Vehicular Electronics and Safety, Istanbul, Turkey, July 2012, pp. 2427.
    3. 3)
      • 3. Garmatyuk, D., Schuerger, J., Morton, Y.T., et al: ‘Feasibility study of a multi-carrier dual-use imaging radar and communication system’. European Microwave Conf., Munich, Germany, October 2007, pp. 14731476.
    4. 4)
      • 4. Harper, A.D., Reed, J.T., Odom, J.L., et al: ‘Performance of a joint radar-communication system in doubly-selective channels’, IEEE Trans. Aerosp. Electron. Syst., 2017, 53, (2), pp. 703715.
    5. 5)
      • 5. Han, L., Wu, K.: ‘24-GHz integrated radio and radar system capable of time-agile wireless communication and sensing’, IEEE Trans. Microw. Theory Tech., 2012, 60, (3), pp. 619631.
    6. 6)
      • 6. Rossler, C.W., Emre, E., Randolph, L.M.: ‘A software defined radar system for joint communication and sensing’. IEEE Radar Conf. (RADAR), Kansas City, USA, May 2011, pp. 10501055.
    7. 7)
      • 7. Garmatyuk, D., Kauffman, K.: ‘Radar and data communication fusion with UWB-OFDM software-defined system’. IEEE Int. Conf. Ultra-Wideband, Vancouver, Canada, September 2009, pp. 454458.
    8. 8)
      • 8. Garmatyuk, D., Schuerger, J., Kauffman, K.: ‘Multifunctional software-defined radar sensor and data communication system’, IEEE Sens. J., 2011, 11, (1), pp. 99106.
    9. 9)
      • 9. Huan, S., Zhou, J., He, N., et al: ‘Software-defined system integrated communications based on active phased array radar’. IEEE Int. Conf. Microwave Technology & Computational Electromagnetics, Beijing, China, May 2011, pp. 508511.
    10. 10)
      • 10. Roberton, M., Brown, E.R.: ‘Integrated radar and communications based on chirped spread-spectrum techniques’. IEEE MTT-S Int. Microwave Symp. Digest, Philadelphia, USA, June 2003, vol. 1, pp. 611614.
    11. 11)
      • 11. Saddik, G.N., Singh, R.S., Brown, E.R.: ‘Ultra-wideband multifunctional communications/radar system’, IEEE Trans. Microw. Theory Tech., 2007, 55, (7), pp. 14311437.
    12. 12)
      • 12. Xu, S., Chen, B., Zhang, P.: ‘Radar-communication integration based on DSSS techniques’. IEEE Int. Conf. Signal Process, Beijing, China, November 2006, pp. 14.
    13. 13)
      • 13. Sturm, C., Wiesbeck, W.: ‘Joint integration of digital beam-forming radar with communication’. Proc. IET Int. Radar Conf., Guilin, China, April 2009, pp. 14.
    14. 14)
      • 14. Surender, S.C., Narayanan, R.M., Das, C.R.: ‘Performance analysis of communications & radar coexistence in a covert UWB OSA system’. IEEE Global Telecommunications Conf. GLOBECOM, Miami, USA, December 2010, pp. 15.
    15. 15)
      • 15. Blunt, S.D., Padmaja, Y., Stiles, J.: ‘Intrapulse radar-embedded communications’, IEEE Trans. Aerosp. Electron. Syst., 2010, 46, (3), pp. 11851200.
    16. 16)
      • 16. Ciuonzo, D., De Maio, A., Foglia, G., et al: ‘Intrapulse radar-embedded communications via multiobjective optimization’, IEEE Trans. Aerosp. Electron. Syst., 2015, 51, (4), pp. 29602974.
    17. 17)
      • 17. Ciuonzo, D., De Maio, A., Foglia, G., et al: ‘Pareto-theory for enabling covert intrapulse radar-embedded communications’. IEEE Int. Radar Conf., Arlington, VA, USA, May 2015, pp. 292297.
    18. 18)
      • 18. Sturm, C., Wiesbeck, W.: ‘Waveform design and signal processing aspects for fusion of wireless communications and radar sensing’, Proc. IEEE, 2011, 99, (7), pp. 12361259.
    19. 19)
      • 19. Sturm, C., Thomas, Z., Wiesbeck, W.: ‘An OFDM system concept for joint radar and communications operations’. IEEE Vehicular Technology Conf., Barcelona, Spain, April 2009, pp. 15.
    20. 20)
      • 20. Sit, Y.L., Sturm, C., Zwick, T.: ‘Doppler estimation in an OFDM joint radar and communication system’. IEEE German Microwave Conf., Darmstadt, Germany, March 2011, pp. 14.
    21. 21)
      • 21. Wang, Z., Liao, G., Yang, Z.: ‘A novel radar waveform based on space-frequency coding compatible with directional communication’. Proc. CIE Int. Conf. Radar, Guangzhou, China, October 2016, pp. 962966.
    22. 22)
      • 22. Högbom, J.A.: ‘Aperture synthesis with a non-regular distribution of interferometer baselines’, Astron. Astrophys. Suppl. Ser., 1974, 15, pp. 417426.
    23. 23)
      • 23. Tsao, J., Steinberg, B.D.: ‘Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique’, IEEE Trans. Antennas Propag., 1988, 36, (4), pp. 543556.
    24. 24)
      • 24. Zuo, L., Li, M., Liu, Z., et al: ‘Range-spread target detection based on the matched ambiguity function’, IET Radar Sonar Navig., 2016, 10, (7), pp. 12131219.
    25. 25)
      • 25. Candes, E.J., Plan, Y.: ‘Matrix completion with noise’, Proc. IEEE, 2010, 98, (6), pp. 925936.
    26. 26)
      • 26. Tropp, J., Gilbert, A.: ‘Signal recovery from random measurements via orthogonal matching pursuit’, IEEE Trans. Inf. Theory., 2008, 53, (12), pp. 46554666.
    27. 27)
      • 27. Borgnat, P., Flandrin, P.: ‘Time-frequency localization from sparsity constraints’. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Las Vegas, USA, April 2008, pp. 37853788.
    28. 28)
      • 28. Daubechies, I., Defrise, M., De Mol, C.: ‘An iterative thresholding algorithm for linear inverse problems with a sparsity constraint’, Commun. Pure Appl. Math., 2004, 57, (11), pp. 14131457.

Related content

This is a required field
Please enter a valid email address