© The Institution of Engineering and Technology
This work analyses the discrete solution of HughesHartogs (HH) for the transmission rate maximisation problem with power constraint in the orthogonal frequency division multiplexing access (OFDMA) systems and explores mechanisms to reduce the computational complexity of greedy algorithms. In addition to the solution characterisation, a computational complexity analysis is developed, considering the number of executed operations for running time purpose. Moreover, the authors have compared the system capacity via the throughput obtained with the HH solution, and its variants combined with three complexity reduction mechanisms. These tools consist of an initial allocation bit vector calculated by rounding the results of the waterfilling (WF) solution, the multiple subchannels per iteration updating and the adoption of a subchannel grouping procedure. Their findings indicate that the update of multiple subchannels and the subcarriers grouping techniques reduce the number of iterations required for convergence of the original HH, with some throughput degradation. Also, the bitallocation mechanism based on the WF is deployed as an alternative to overcome the HH solution, increasing the computational complexity.
References


1)

1. Basaran, S. T., Kurt, G. K.: ‘Joint subcarrier and power allocation in OFDMA systems for outage minimization’, IEEE Commun. Lett., 2016, 20, (10), pp. 2007–2010.

2)

2. Fathi, M., Karipidis, E.: ‘Distributed allocation of subcarrier, power and bitlevel in multicell orthogonal frequencydivision multipleaccess networks’, IET Commun., 2014, 8, (6), pp. 781–788.

3)

3. Xiong, C., Li, G. Y., Zhang, S., et al: ‘Energy and spectralefficiency tradeoff in downlink OFDMA networks’, IEEE Trans. Wirel. Commun., 2011, 10, (11), pp. 3874–3886.

4)

4. Kim, K., Han, Y., Kim, S.L.: ‘Joint subcarrier and power allocation in uplink OFDMA systems’, IEEE Commun. Lett., 2005, 9, (6), pp. 526–528.

5)

5. Shannon, C. E.: ‘Communication in the presence of noise’, Proc. IRE, 1949, 37, (1), pp. 10–21.

6)

6. Gallager, R. G.: ‘Information theory and reliable communication’ (Wiley, USA, 1968, 1st edn.).

7)

7. Souza, A. R. C., de Almeida Amazonas, J. R., Abrão, T.: ‘Power and subcarrier allocation strategies for energyefficient uplink OFDMA systems’, IEEE J. Sel. Areas Commun., 2016, 34, (12), pp. 3142–3156.

8)

8. HughesHartogs, D.: ‘Ensemble modem structure for imperfect transmission media’, , July 1987, .

9)

9. Chow, P. S., Cioffi, J. M., Bingham, J. A. C.: ‘A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels’, IEEE Trans. Commun., 1995, 43, (2/3/4), pp. 773–775.

10)

10. Wong, C. Y., Cheng, R. S., Lataief, K. B., et al: ‘Multiuser OFDM with adaptive subcarrier, bit, and power allocation’, IEEE J. Sel. Areas Commun., 1999, 17, (10), pp. 1747–1758.

11)

11. Zhang, H., Fu, J., Song, J.: ‘A HughesHartogs algorithm based bit loading algorithm for OFDM systems’. 2010 IEEE Int. Conf. on Communications, Cape Town, South Africa, May 2010, pp. 1–5.

12)

12. Sampaio, L. D. H., Abrao, T., Durand, F. R.: ‘Game theory based resource allocation in multicell massive MIMO OFDMA networks’. 2017 IEEE Wireless Communications and Networking Conf. (WCNC), San Francisco, USA, March 2017, pp. 1–6.

13)

13. Farzamnia, A., Yew, E. S., Islam, M. N.: ‘Investigation on channel capacity enhancement for MIMOOFDM in fading channels using hybrid water filling and Nash algorithm’. 2017 IEEE 13th Int. Colloquium on Signal Processing its Applications (CSPA), Batu Ferringhi, Malaysia, March 2017, pp. 249–253.

14)

14. Mohammadi, M., Andargoli, S. M. H.: ‘Sum throughput maximization for downlink MIMOOFDMA based cognitive radio networks in spectrum overlay model’. 2016 8th Int. Symp. on Telecommunications (IST), Tehran, Iran, Sept 2016, pp. 72–77.

15)

15. Cao, H., Cai, J., Alfa, A., et al: ‘Efficient resource allocation scheduling for MIMOOFDMACR downlink systems’. 2016 8th Int. Conf. on Wireless Communications Signal Processing (WCSP), Yangzhou, China, Oct 2016, pp. 1–5.

16)

16. Papandreou, N., Antonakopoulos, T.: ‘A new computationally efficient discrete bitloading algorithm for DMT applications’, IEEE Trans. Commun., 2005, 53, (5), pp. 785–789.

17)

17. Vo, T. N., Amis, K., Chonavel, T., et al: ‘Achievable throughput optimization in OFDM systems in the presence of interference and its application to power line networks’, IEEE Trans. Commun., 2014, 62, (5), pp. 1704–1715.

18)

18. NaderEsfahani, S., Afrasiabi, M.: ‘Simple bit loading algorithm for OFDMbased systems’, IET Commun., 2007, 1, (3), pp. 312–316.

19)

19. Mahmood, A., Belfiore, J. C.: ‘An efficient algorithm for optimal discrete bitloading in multicarrier systems’, IEEE Trans. Commun., 2010, 58, (6), pp. 1627–1630.

20)

20. Arumugam, S., Perumal, D.: ‘Power control through water filling game theory in adaptive modulation based MCCDMAMIMO system’. 2016 Int. Conf. on Communication and Signal Processing (ICCSP), Melmaruvathur, India, April 2016, pp. 1415–1419.

21)

21. Zyren, J., McCoy, W.: ‘White paper: overview of the 3GPP long term evolution physical layer’. , Tech. Rep. 3GPPEVOLUTIONWP, June 2007.

22)

22. Kim, I., Park, I.S., Lee, Y. H.: ‘Use of linear programming for dynamic subcarrier and bit allocation in multiuser OFDM’, IEEE Trans. Veh. Technol., 2006, 55, (4), pp. 1195–1207.

23)

23. Kim, Y., Kim, J.: ‘An efficient subcarrier allocation scheme for capacity enhancement in multiuser OFDM systems’. VTC Spring 2008  IEEE Vehicular Technology Conf., Singapore, May 2008, pp. 1915–1919.

24)

24. Chow, P. S., Cioffi, J. M., Bingham, J. A. C.: ‘A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels’, IEEE Trans. Commun., 1995, 43, pp. 773–775.

25)

25. Cormen, T. H., Stein, C., Rivest, R. L., et al: ‘Introduction to algorithms’ (McGrawHill Higher Education, USA, 2001, 2nd edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/ietspr.2018.5080
Related content
content/journals/10.1049/ietspr.2018.5080
pub_keyword,iet_inspecKeyword,pub_concept
6
6