Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Correcting estimates of DNA CNAs using improved confidence masks tuned to gold standard

Copy number alterations (CNAs) are hallmarks of cancer, which are now been routinely measured by different techniques and used for diagnostic and prognostic purpose. Efficient and accurate detection of the breakpoint positions in heterogeneous cancer sample measured with intrinsic random noise and subjected to technical and biological biases is a challenging practical and methodological problem. To improve the CNA estimates, the authors present the probabilistic approach for breakpoints detection that gives confidence masks (the system of local segmentation profiles with confidence probabilities) tuned using experts estimates. The authors show that the asymmetric exponential power distribution matches well the uncertainties (jitter) in the breakpoint locations. The confidence upper and lower boundary masks for the breakpoint location are built using this function. The confidence masks are then tuned based on the medical expert annotations of the training set of the breakpoints obtained by the standard circular binary segmentation (CBS) algorithm. Comparison of modified confidence masks and experts annotations on the testing set of CNA profiles of neuroblastoma showed improvement of the CNA estimates.

References

    1. 1)
      • 12. Ben-Yaacov, E., Eldar, Y. C.: ‘A fast and flexible method for the segmentation of aCGH data’, Bioinformatics, 2008, 24, (16), pp. i139i145.
    2. 2)
      • 26. Munoz, J.U., Ibarra, O., Shmaliy, Y. S.: ‘Maximum likelihood estimation of DNAcopy number variations in HR-CGH arrays data’. Proc. 12th WSEAS Int. Conf. on Signal Process., Comput. Geometry and Artif. Vision (ISCGAV’ 12), Proc. 12th WSEAS Int. Conf. on Systems Theory and Sc. Comput. (ISTASC’ 12), Istanbul, Turkey, 2012, pp. 4550.
    3. 3)
      • 38. Munoz-Minjares, J., Shmaliy, Y. S., Morales-Mendoza, L. J., et al: ‘Accurate jitter computation in CNA breakpoints using hybrid confidence masks with applications to SNP array probing’, IEEE. Access., 2018, 6, pp. 33763386.
    4. 4)
      • 6. Li, W., Olivier, M.: ‘Current analysis platforms and methods for detecting copy number variation’, Physiol. Genom., 2013, 45, (1), pp. 116.
    5. 5)
      • 3. Zack, T.I., Schumacher, S.E., Carter, S.L., et al: ‘Pan-cancer patterns of somatic copy number alteration’, Nat. Genet., 2013, 45, (10), pp. 11341140.
    6. 6)
      • 9. Lemaitre, C., Tannier, E., Gautier, C., et al: ‘Precise detection of rearrangement breakpoints in mammalian chromosomes’, BMC Bioinformatics, 2008, 9, (1), pp. 115.
    7. 7)
      • 11. Tibshirani, R., Wang, P.: ‘Spatial smoothing and hot spot detection for CGH data using the fused lasso’, Biostatistics, 2007, 9, (1), pp. 1829.
    8. 8)
      • 42. Olshen, A.B., Venkatraman, E.S., Lucito, R., et al: ‘Circular binary segmentation for the analysis of array based DNA copy number data’, Biostatistics, 2004, 5, (4), pp. 557572.
    9. 9)
      • 21. Bajaj, V., Rai, K., Kumar, A., et al: ‘Rhythm-based features for classification of focal and non-focal EEG signals’, IET Signal Process.., 2017, 11, (6), pp. 743748.
    10. 10)
      • 23. Azzawi, H., Hou, J., Xiang, Y., et al: ‘Lung cancer prediction from microarray data by gene expression programming’, IET Syst. Biol., 2016, 10, (5), pp. 168178.
    11. 11)
      • 16. Hupe, P., Stransky, N., Thiery, J.P., et al: ‘Analysis of array CGH data: from signal ratio to gain and loss of DNA regions’, Bioinformatics, 2004, 20, (18), pp. 34133422.
    12. 12)
      • 29. Joshi, A.: ‘Speech emotion recognition using combined features of HMM & SVM algorithm’, Int. J. Adv. Res. Comput. Sci. Softw. Eng., 2013, 3, (8), pp. 387393.
    13. 13)
      • 22. Meidani, M., Mashoufi, B.: ‘Introducing new algorithms for realising an FIR filter with less hardware in order to eliminate power line interference from the ECG signal’, IET Signal Process.., 2016, 10, (7), pp. 709716.
    14. 14)
      • 7. Østrup, O., Ahlborn, L.B., Lassen, U., et al: ‘Detection of copy number alterations in cell-free tumor DNA from plasma’, BBA Clin., 2017, 7, pp. 120126.
    15. 15)
      • 30. Picard, F., Robin, S., Lavielle, M., et al: ‘A statistical approach for array CGH data analysis’, BMC Bioinformatics, 2012, 6, (1), pp. 2737.
    16. 16)
      • 36. Munoz-Minjares, J.U., Cabal, J., Shmaliy, Y.S.: ‘Effect of noise on estimate bounds for genome DNA structural changes’, WSEAS Trans. Biol. Biomed., 2014, 11, pp. 5261.
    17. 17)
      • 5. LaFramboise, T.: ‘Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances’, Nucleic Acids Res., 2009, 37, (13), pp. 41814193.
    18. 18)
      • 35. Shmaliy, Y. S.: ‘On the multivariate conditional probability density of a signal perturbed by Gaussian noise’, IEEE Trans. Inf. Theor., 2007, 53, pp. 47924797.
    19. 19)
      • 14. Killick, R., Fearnhead, P., Eckley, I.A.: ‘Optimal detection of changepoints with a linear computational cost’, J. Am. Stat. Assoc., 2012, 107, (500), pp. 15901598.
    20. 20)
      • 18. Hocking, T.D., Schleiermacher, G., Janoueeix-Lerosey, I., et al: ‘Learning smoothing models of copy number profiles using breakpoint annotations’, BMC Bioinformatics, 2013, 14, (164), pp. 114.
    21. 21)
      • 4. Michels, E., De Preter, K., Van Roy, N., et al: ‘Detection of DNA copy number alterations in cancer by array comparative genomic hybridization’, Genet. Med., 2007, 9, (9), pp. 574584.
    22. 22)
      • 40. Buldyrev, S. V., Growiec, J., Riccaboni, M., et al: ‘The growth of business firms: facts and theory’, J. Eur. Econ. Assoc., 2007, 5, (2–3), pp. 574584.
    23. 23)
      • 24. Muñoz, J.U., Cabal, J., Shmaliy, Y.S.: ‘Jitter probability in the breakpoints of discrete sparse piecewise-constant signals’. Proc. 21st European Signal Process. Conf. (EUSIPCO), Marrakech, Marocco, Sep. 2013.
    24. 24)
      • 8. Popova, T., Boeva, V., Manie, E., et al: ‘Analysis of somatic alterations in cancer genome: from SNP arrays to next generation sequencing’, inEd. by Ltd iP.: ‘Sequence and genome analysis I humans, animals and plants’ (iConcept Press Ltd., 2013), pp. 122.
    25. 25)
      • 31. Munoz-Minjares, J.U., Shmaliy, Y. S.: ‘Approximate jitter probability in the breakpoints of genome copy number variations’. Proc. 10th Int. Conf. on Electrical Eng., Computing Science and Autom. Control (CCE), Mexico City, Mexico, 2013, pp. 128131.
    26. 26)
      • 39. Ayebo, A., Kozubowski, T.J.: ‘An asymmetric generalization of Gaussian and Laplace laws’, J. Probab. Stat. Sci., 2003, 1, (2), pp. 187210.
    27. 27)
      • 25. Munoz-Minjares, J.U., Shmaliy, Y. S.: ‘Improving estimates of the breakpoints in genome copy number alteration profiles with confidence masks’, Biomed. Signal Proc. Control, 2017, 10, pp. 238248.
    28. 28)
      • 15. Pierre-Jean, M., Rigaill, G., Neuvial, P.: ‘Performance evaluation of DNA copy number segmentation methods’, Brief. Bioinform., 2015, 16, (4), pp. 600615.
    29. 29)
      • 37. Kozubowski, T. J., Inusah, S.: ‘A skew Laplace distribution on integers’, Annal. Inst. Stat. Math., 2006, 58, pp. 555571.
    30. 30)
      • 17. Teo, S.M., Pawitan, Y., Ku, C.S., et al: ‘Statistical challenges associated with detecting copy number variations with next-generation sequencing’, Bioinformatics, 2012, 28, (21), pp. 27112718.
    31. 31)
      • 10. Wong, K., Keane, T.M., Stalker, J., et al: ‘Enhanced structural variant and breakpoint detection using SVMerge by integration of multiple detection methods and local assembly’, Genome Biol., 2010, 11, (12), pp. 19.
    32. 32)
      • 43. Venkatraman, E.S., Olshen, A.B.: ‘A faster circular binary segmentation algorithm for the analysis of array CGH data’, Bioinformatics, 2007, 23, (6), pp. 657663.
    33. 33)
      • 33. Russell, B.C., Torralba, A., Murphy, K.P., et al: ‘Labelme: a database and web-based tool for image annotation’, Int. J. Comput. Vis., 2008, 77, (1–3), pp. 157173.
    34. 34)
      • 19. Naghsh, N. Z., Ghorbani, A., Amindavar, H.: ‘Compressive sensing for microwave breast cancer imaging’, IET Signal Process., 2017, 12, (2), pp. 242246.
    35. 35)
      • 28. Muñoz, J.U., Cabal, J., Shmaliy, Y. S.: ‘Confidence masks for genome DNA copy number variations in applications to HR-CGH array measurements’, Biomed. Signal Proc. Control, 2014, 13, pp. 337344.
    36. 36)
      • 32. Munoz-Minjares, J.U., Shmaliy, Y.S., Cabal-Aragon, J.: ‘Confidence limits for genome DNA copy number variations in HR-CGH array measurements’, Signal Proc. Control, 2014, 10, pp. 166173.
    37. 37)
      • 2. Kim, T.M., Xi, R., Luquette, L.J., et al: ‘Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes’, Genome Res., 2013, 23, pp. 217227.
    38. 38)
      • 27. Shmaliy, Y. S., Morales, L.: ‘FIR smoothing of discrete-time polynomial models in state space’, IEEE Trans. Signal Process., 2010, 58, (5), pp. 25442555.
    39. 39)
      • 41. Massey, F. J.: ‘The Kolmogorov–Smirnov test for goodness of fit’, J. Am. Stat. Assoc., 1951, 46, (253), pp. 6878.
    40. 40)
      • 1. Stratton, M.R., Campbell, P.J., Futreal, P.A.: ‘The cancer genome’, Nature, 2009, 458, pp. 719724.
    41. 41)
      • 13. Hoefling, H.: ‘A path algorithm for the fused lasso signal Approximator’, J. Comput. Graph. Stat., 2010, 19, (4), pp. 9841006.
    42. 42)
      • 34. Jones, T.R., Carpenter, A.E., Lamprecht, M.R., et al: ‘Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning’, Proc. Natl. Acad. Sci., 2009, 106, (6), pp. 18261831.
    43. 43)
      • 20. Yu, H.-J., Lee, A.Y., Choi, Y.: ‘Human elbow joint angle estimation using electromyogram signal processing’, IET Signal Process.., 2011, 5, (8), pp. 767775.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2018.5011
Loading

Related content

content/journals/10.1049/iet-spr.2018.5011
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address