http://iet.metastore.ingenta.com
1887

Denoising of pre-stack seismic data using subspace estimation methods

Denoising of pre-stack seismic data using subspace estimation methods

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Denoising is one of the core steps in seismic data processing flow. The seismic gather consists of multiple traces captured at different receivers. A set of receivers observe waves which are reflected from the same reflection point. Those traces need to be grouped together as they contain the same information about the earth subsurface layers. This is done by finding a common mid-point (CMP) between the source and geophones. The time delay between CMP gathered traces are corrected by the normal move out correction method but the individual traces are corrupted by noise. In this paper we, propose a method for denoising individual traces. The set of traces can be modelled as belonging to a low-dimensional subspace of an ambient signal space. This allows for construction of sparse representations of each trace in terms of other traces in the CMP gather. The resulting sparse representations are subsequently utilised to construct approximations of individual traces and thus, noise is suppressed. We constructed, the approximations using orthogonal matching pursuit. We applied proposed method to synthetic and field seismic data, the proposed technique performs better on established benchmarks while capturing the true locations of weak reflections and effectively attenuating the random noise.

References

    1. 1)
      • 1. Nolet, G.: ‘Seismic tomography: with applications in global seismology and exploration geophysics’ (Springer Science and Business Media, Holland, 2012), vol. 5.
    2. 2)
      • 2. Karimpouli, S., Hassani, H., Nabi-Bidhendi, M., et al: ‘Application of probabilistic facies prediction and estimation of rock physics parameters in a carbonate reservoir from Iran’, J. Geophys. Eng., 2013, 10, (1), p. 015008.
    3. 3)
      • 3. Steeples, D.W., Miller, R.D.: ‘January. Seismic reflection methods applied to engineering, environmental, and ground-water problems’. Symp. on the Application of Geophysics to Engineering and Environmental Problems, Society of Exploration Geophysicists, 1988, pp. 409461.
    4. 4)
      • 4. Yilmaz, O.: ‘Seismic data analysis: processing, inversion, and interpretation of seismic data’ (Society of Exploration Geophysicists, Tulsa, Okla, 2001).
    5. 5)
      • 5. Siahsar, M.A.N., Gholtashi, S., Abolghasemi, V., et al: ‘Simultaneous denoising and interpolation of 2D seismic data using data-driven non-negative dictionary learning’, Signal Process., 2017, 141, pp. 309321.
    6. 6)
      • 6. Upadhyay, S.K.: ‘Seismic reflection processing: with special reference to anisotropy’ (Springer Science and Business Media, Berlin, 2013).
    7. 7)
      • 7. Eaton, D.W., Milkereit, B., Salisbury, M.H., et al: ‘Hardrock seismic exploration’ (Society of Exploration Geophysicists, Tulsa, Okla, 2003).
    8. 8)
      • 8. Telford, W.M., Telford, W.M., Geldart, L.P., et al: ‘Applied geophysics’ (Cambridge University Press, Melbourne, Australia, 1990), vol. 1.
    9. 9)
      • 9. Berkhout, A.J., Verschuur, D.J.: ‘Estimation of multiple scattering by iterative inversion, part 1 theoretical consideration’, Geophysics, 1997, 62, pp. 15861595.
    10. 10)
      • 10. Foster, D.J., Mosher, C.C.: ‘Suppression of multiple reflections using the radon transform’, Geophysics, 1992, 57, pp. 386395.
    11. 11)
      • 11. Verschuur, D.J., Berkhout, A., Wapenaar, C., et al: ‘Adaptive surface-related multiple elimination’, Geophysics, 1992, 57, (9), pp. 11661177.
    12. 12)
      • 12. Hampson, D.: ‘Inverse velocity stacking for multiple elimination’, J. Can. Soc. Explor. Geophys., 1986, 22, pp. 4455.
    13. 13)
      • 13. Liu, G.C., Chen, X.H., Li, J.Y., et al: ‘Seismic noise attenuation using nonstationary polynomial fitting’, Appl. Geophys., 2011, 8, (1), pp. 1826.
    14. 14)
      • 14. Yaru, X., Xiaohong, C.: ‘Random noise attenuation based on orthogonal polynomials transform’, Soc. Explor. Geophys., SEG technical program expanded abstracts, 2009, pp. 33773380.
    15. 15)
      • 15. Galbraith, M., Yao, Z.: ‘FX plus deconvolution for seismic data noise reduction’, Soc. Explor. Geophys., SEG technical program expanded abstracts, 2012, pp. 14.
    16. 16)
      • 16. Deng, P., Chen, Y., Zhang, Y., et al: ‘Weighted stacking of seismic AVO data using hybrid AB semblance and local similarity’, J. Geophys. Eng., 2016, 13, (2), p. 152.
    17. 17)
      • 17. Abma, R., Claerbout, J.: ‘Lateral prediction for noise attenuation by t–x and f–x techniques’, Geophysics, 1995, 60, pp. 18871896.
    18. 18)
      • 18. Wang, Y.: ‘Random noise attenuation using forward-backward linear prediction’, J. Seism. Explor., 1999, 8, pp. 133142.
    19. 19)
      • 19. Liu, G., Chen, X.: ‘Noncausal f–x–y regularized nonstationary prediction filtering for random noise attenuation on 3D seismic data’, J. Appl. Geophys., 2013, 93, pp. 6066.
    20. 20)
      • 20. Tian, Y., Li, Y., Lin, H., et al: ‘A sparse NMF-SU for seismic random noise attenuation’, IEEE Geosci. Remote Sens. Lett., 2013, 10, (3), pp. 607611.
    21. 21)
      • 21. Canales, L.: ‘Random noise reduction’. 54th Annual Int. Meeting of the Society of Exploration Geophysicists, 1984, pp. 525527.
    22. 22)
      • 22. Chen, Y., Ma, J.: ‘Random noise attenuation by f–x empirical-mode decomposition predictive filtering’, Geophysics, 2014, 79, (3), pp. V81V91.
    23. 23)
      • 23. Zhang, R., Ulrych, T.: ‘Physical wavelet frame denoising’, Geophysics, 2003, 68, pp. 225231.
    24. 24)
      • 24. Chen, Y., Ma, J., Fomel, S.: ‘Double-sparsity dictionary for seismic noise attenuation’, Geophysics, 2016, 81, (2), pp. V103V116.
    25. 25)
      • 25. Liu, W., Cao, S., Chen, Y..: ‘Seismic time-frequency analysis via empirical wavelet transform’, IEEE Geosci. Remote Sens. Lett., 2015a, 13, pp. 2832.
    26. 26)
      • 26. Liu, W., Cao, S., Liu, Y., et al: ‘Synchrosqueezing transform and its applications in seismic data analysis’, J. Seism. Explor., 2016d, 25, pp. 2744.
    27. 27)
      • 27. Naghizadeh, M., Sacchi, M.D.: ‘Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data’, Geophysics, 2010, 75, (6), pp. WB189WB202.
    28. 28)
      • 28. Zu, S., Zhou, H., Chen, Y., et al: ‘A periodically varying code for improving deblending of simultaneous sources in marine acquisition’, Geophysics, 2016, 81, (3), pp. V213V225.
    29. 29)
      • 29. Liu, W., Cao, S., Chen, Y., et al: ‘An effective approach to attenuate random noise based on compressive sensing and curvelet transform’, J. Geophys. Eng., 2016, 13, pp. 135145.
    30. 30)
      • 30. Liu, W., Cao, S., Gan, S., et al: ‘One-step slope estimation for dealiased seismic data reconstruction via iterative seislet thresholding’, IEEE Geosci. Remote Sens. Lett., 2016, 13, pp. 14621466.
    31. 31)
      • 31. Wu, X., Uden, R., Chapman, M..: ‘Shale anisotropic elastic modeling and seismic reflections’, J. Seism. Explor., 2016, 25, pp. 419432.
    32. 32)
      • 32. Fomel, S., Liu, Y.: ‘Seislet transform and seislet frame’, Geophysics, 2010, 75, (3), pp. V25V38.
    33. 33)
      • 33. Cai, J., Huang, S., Ji, H., et al: ‘Data-driven tight frame construction and image denoising’, Appl. Comput. Harmon. Anal., 2013, 37, pp. 89105.
    34. 34)
      • 34. Chen, Y.: ‘Fast dictionary learning for noise attenuation of multidimensional seismic data’, Geophys. J. Int., 2017, 209, pp. 2131.
    35. 35)
      • 35. AllenJ, B.: ‘Short term spectral analysis, synthetic and modification by discrete Fourier transform’, IEEE Trans. Acoust. Speech Signal Process., 1977, 25, (3), pp. 235238.
    36. 36)
      • 36. Mallat, S.G.: ‘A wavelet tour of signal processing: the sparse way’ (Academic, Orlando, FL, USA, 2009).
    37. 37)
      • 37. Chakraborty, A., Okaya, D.: ‘Frequency-time decomposition of seismic data using wavelet-based methods’, Geophysics, 1995, 60, (6), pp. 19061916.
    38. 38)
      • 38. CandÃĺs, E.J., Donoho, D.L.: ‘Curvelets – a surprisingly effective nonadaptive representation for objects with edges’, in Schumaker, L., et al (Eds.): ‘Curve and surfaces’ (Vanderbilt University Press, Nashville, TN, 1999), pp. 105120.
    39. 39)
      • 39. Vossen, R.V., Curtis, A., Laake, A., et al: ‘Surface-consistent deconvolution using reciprocity and waveform inversion’, Geophysics, 2006, 71, (2), pp. V19V30.
    40. 40)
      • 40. Neelamani, R., Baumstein, A.I., Gillard, D.G., et al: ‘Coherent and random noise attenuation using the curvelet transform’, Lead. Edge, 2008, 27, (2), pp. 240248.
    41. 41)
      • 41. Lari, H.H., Gholami, A.: ‘Curvelet-TV regularized Bregman iteration for seismic random noise attenuation’, J. Appl. Geophysics, 2014, 109, pp. 233241.
    42. 42)
      • 42. Gan, S., Wang, S., Chen, Y., et al: ‘Compressive sensing for seismic data reconstruction via fast projection onto convex sets based on seislet transform’, J. Appl. Geophys., 2016, 130, pp. 194208.
    43. 43)
      • 43. Dutta, G., Schuster, G.T.: ‘Sparse least-squares reverse time migration using seislets’, SEG Tech. Program Expanded Abstr., 2015, pp. 42324237.
    44. 44)
      • 44. Kaplan, S.T., Sacchi, M.D., Ulrych, T.J., et al: ‘Sparse coding for data-driven coherent and incoherent noise attenuation’. 79th Annual Int. Meeting, SEG, Expanded Abstracts, 2009, pp. 33273331.
    45. 45)
      • 45. Beckouche, S., Ma, J.: ‘Simultaneous dictionary learning and denoising for seismic data’, Geophysics, 2014, 79, pp. A27A31.
    46. 46)
      • 46. Sacchi, M.D.: ‘F–x singular spectrum analysis’, CSPG CSEG CWLS Convention, 2009, pp. 392395.
    47. 47)
      • 47. Oropeza, V., Sacchi, M.D.: ‘Simultaneous seismic data and reconstruction via multichannel singular spectrum analysis’, Geophysics, 2011, 76, (3), pp. V25V32.
    48. 48)
      • 48. Abma, R., Kabir, N.: ‘3D interpolation of irregular data with a POCS algorithm’, Geophysics, 2006, 71, (6), pp. E91E97.
    49. 49)
      • 49. Bekara, M., Van der Baan, M.: ‘Local singular value decomposition for signal enhancement of seismic data’, Geophysics, 2007, 72, (2), pp. V59V65.
    50. 50)
      • 50. Dorst, L., Fontijne, D., Mann, S., et al: ‘Geometric algebra for computer science: an object-oriented approach to geometry’ (Morgan Kaufmann Publishers Inc., San Francisco, 2009).
    51. 51)
      • 51. Oreifej, O., Shah, M.: ‘Robust subspace estimation using low-rank optimization’ (Springer, London, 2014), pp. 5567.
    52. 52)
      • 52. Yang, J., Luo, L., Qian, J., et al: ‘Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes’, IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39, (1), pp. 156171.
    53. 53)
      • 53. Vidal, R., Favaro, P.: ‘Low rank subspace clustering (LRSC)’, Pattern Recognit. Lett., 2014, 43, pp. 4761.
    54. 54)
      • 54. Beck, A., Teboulle, M.: ‘A fast iterative shrinkage-thresholding algorithm for linear inverse problems’, SIAM J. Imaging Sci., 2009, 2, (1), pp. 183202.
    55. 55)
      • 55. Chan, T.S.T., Yang, Y.H.: ‘Polar n-complex and n-bicomplex singular value decomposition and principal component pursuit’, IEEE Trans. Signal Process., 2016, 64, (24), pp. 65336544.
    56. 56)
      • 56. CandÃĺs, E.J., Li, X., Ma, Y., et al: ‘Robust principal component analysis’, J. ACM, 2011, 58, (3), p. 11.
    57. 57)
      • 57. Hogben, L.: ‘Handbook of linear algebra’ (Chapman and Hall, Boca Raton, 2013).
    58. 58)
      • 58. Cai, J.F., Candès, E.J., Shen, Z., et al: ‘A singular value thresholding algorithm for matrix completion’, SIAM J. Optim., 2010, 20, (4), pp. 19561982.
    59. 59)
      • 59. Quesada, J., Rodriguez, P.: ‘September. Automatic vehicle counting method based on principal component pursuit background modeling’. IEEE Int. Conf. on Image Processing (ICIP), 2016, pp. 38223826.
    60. 60)
      • 60. Tropp, J.A.: ‘Greed is good: algorithmic results for sparse approximation’, IEEE Trans. Inf. Theory, 2004, 50, (10), pp. 22312242.
    61. 61)
      • 61. Davenport, M.A., Wakin, M.B.: ‘Analysis of orthogonal matching pursuit using the restricted isometry property’, IEEE Trans. Inf. Theory, 2010, 56, (9), pp. 43954401.
    62. 62)
      • 62. Liu, W., Cao, S., Wang, Z.: ‘Application of variational mode decomposition to seismic random noise reduction’, J. Geophys. Eng., 2017, 14, (4), p. 888.
    63. 63)
      • 63. Li, Q., Gao, J.: ‘Application of seismic data stacking in time–frequency domain’, IEEE Geosci. Remote Sens. Lett., 2014, 11, (9), pp. 14841488.
    64. 64)
      • 64. Zhang, Q.S., Jiang, J.J., Zhai, J.H., et al: ‘seismic random noise attenuation using modified wavelet thresholding’, Ann. Geophys., 2017, 59, (6), p. 0647.
    65. 65)
      • 65. Harrison, M.P.: ‘F–x linear prediction filtering of seismic images’, CREWES.
    66. 66)
      • 66. Anvari, R., Siahsar, M.A.N., Gholtashi, S., et al: ‘Seismic random noise attenuation using synchrosqueezed wavelet transform and low-rank signal matrix approximation’, IEEE Trans. Geosci. Remote Sens., 2017, 55, (11), pp. 65746581.
    67. 67)
      • 67. Mousa, W.A., Al-Shuhail, A.A.: ‘Processing of seismic reflection data using MATLAB’, Synth. Lect. Signal Process., 2011, 5, (1), pp. 197.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2017.0556
Loading

Related content

content/journals/10.1049/iet-spr.2017.0556
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address