access icon free On distributed non-linear active noise control using diffusion collaborative learning strategy

Active noise control in a non-linear spatial region is a challenging problem, especially for low-frequency noise control applications. The investigation of the existing literature reveals that this problem is tackled by systems with multiple sensors and loudspeakers with a centralised processor. However, the use of centralised techniques is bulky, computationally expensive and lacks scalability. Therefore, the authors propose a distributed learning approach for noise cancellation using a diffusion collaborative strategy. The proposed Legendre-functional link network diffusion filtered s least mean square (FsLMS) algorithm is compared with the standard multi-channel FsLMS algorithm. For different non-linear scenarios, the performance of the proposed method is evaluated in terms of noise reduction performance and computational complexity. It is demonstrated that the proposed method offers significant improvement in noise mitigation performance and computational load as compared with its centralised multi-channel counterpart.

Inspec keywords: loudspeakers; least mean squares methods; active noise control; computational complexity

Other keywords: computational complexity; multiple sensors; loudspeakers; nonlinear spatial region; least mean square algorithm; centralised multichannel counterpart; distributed nonlinear active noise control; noise cancellation; Legendre-functional link network diffusion; standard multichannel FsLMS algorithm; distributed learning approach; low-frequency noise control; centralised processor; diffusion collaborative learning strategy; noise reduction performance

Subjects: Interpolation and function approximation (numerical analysis); Signal processing theory; Hi-Fi equipment and systems; Interpolation and function approximation (numerical analysis); Filtering methods in signal processing

References

    1. 1)
      • 24. Gholami-Boroujeny, S., Eshghi, M.: ‘Non-linear active noise cancellation using a bacterial foraging optimization algorithm’, IET Signal Process., 2012, 6, (4), pp. 364373.
    2. 2)
      • 21. Kumar, V.N., Lakshmi Narayana, K.V.: ‘Development of thermistor signal conditioning circuit using artificial neural networks’, IET Sci. Meas. Technol., 2015, 9, (8), pp. 955961.
    3. 3)
      • 12. Antonanzas, C., Ferrer, M., Gonzalez, A., et al: ‘Diffusion algorithm for active noise control in distributed networks’. 22nd Int. Congress on Sound and Vibration (ICSV22), 2015.
    4. 4)
      • 2. Guldenschuh, M., Holdrich, R.: ‘Prediction filter design for active noise cancellation headphones’, IET Signal Process., 2013, 7, (6), pp. 497504.
    5. 5)
      • 14. Song, J.M., Park, P.: ‘A diffusion strategy for the multichannel active noise control system in distributed network’. Proc. Int. Conf. on Computational Science and Computational Intelligence (CSCI), 2016, pp. 659664.
    6. 6)
      • 29. Cho, H.C., Park, S.W., Lee, K.S., et al: ‘A novel multiple-channel active noise control approach with neural secondary-path model for interior acoustic noise attenuation of railway train systems’, IET Signal Process., 2012, 6, (8), pp. 772780.
    7. 7)
      • 20. Strauch, P., Mulgrew, B.: ‘Active control of nonlinear noise processes in a linear duct’, IEEE Trans. Signal Process., 1998, 46, (9), pp. 24042412.
    8. 8)
      • 5. Lopes, C.G., Sayed, A.H.: ‘Incremental adaptive strategies over distributed networks’, IEEE Trans. Signal Process., 2007, 55, (8), pp. 40644077.
    9. 9)
      • 22. Patra, J.C., Juhola, M., Meher, P.K.: ‘Intelligent sensors using computationally efficient Chebyshev neural networks’, IET Sci. Meas. Technol., 2008, 2, (2), pp. 6875.
    10. 10)
      • 27. Kumar, P.V., Prabhu, K.M.M., Das, D.P.: ‘Block filtered-s least mean square algorithm for active control of non-linear noise systems’, IET Signal Process., 2010, 4, (2), pp. 168180.
    11. 11)
      • 19. Costa, M. H., Bermudez, J. C., Bershad, N. J.: ‘Stochastic analysis of the filtered-X LMS algorithm in systems with nonlinear secondary path’, IEEE Trans. Signal Process., 2002, 50, (6), pp. 13271342.
    12. 12)
      • 15. Elliott, S. J., Boucher, C. C.: ‘Interaction between multiple feed-forward active control systems’, IEEE Trans. Speech Audio Process., 1994, 2, pp. 521530.
    13. 13)
      • 16. Zheng-hong, D., Hui-gang, W., Guoyue, C.: ‘Blind adaptive preprocessing to multichannel feedforward active noise control system’, IET Signal Process., 2013, 7, (6), pp. 461470.
    14. 14)
      • 28. George, N.V., Panda, G.: ‘Active control of nonlinear noise processes using cascaded adaptive nonlinear filter’, Appl. Acoust., 2012, 74, pp. 217222.
    15. 15)
      • 6. Lopes, C.G., Sayed, A.H.: ‘Diffusion least mean squares over adaptive networks: formulation and performance analysis’, IEEE Trans. Signal Process., 2008, 56, (7), pp. 31223136.
    16. 16)
      • 25. Das, D.P., Panda, G.: ‘Active mitigation of nonlinear noise processes using a novel filtered-s LMS algorithm’, IEEE Trans. Speech Audio Process., 2004, 12, (3), pp. 313322.
    17. 17)
      • 23. Tan, L., Jiang, J.: ‘Adaptive volterra filters for active control of nonlinear noise processes’, IEEE Trans. Signal Process., 2001, 49, (8), pp. 16671676.
    18. 18)
      • 10. Das, D.P., Mohapatra, S.R., Routray, A., et al: ‘Filtered-s LMS algorithm for multichannel active control of nonlinear noise processes’, IEEE Trans. Audio Speech, Lang. Process., 2006, 14, (5), pp. 18751880.
    19. 19)
      • 9. George, N.V., Panda, G.: ‘Advances in active noise control: a survey, with emphasis on recent nonlinear techniques’, Signal Process., 2013, 93, (2), pp. 363377.
    20. 20)
      • 13. Lorente, J., Antonanzas, C., Ferrer, M., et al: ‘Block-based distributed adaptive filter for active noise control in a collaborative network’. IEEE 23rd European Signal Conf. (EUSIPCO), 2015, pp. 310314.
    21. 21)
      • 7. Marcetic, D.P., Tomic, J.J., Kusljevic, M.D.: ‘Unbalanced three-phase distribution system frequency estimation using least mean squares method and positive voltage sequence’, IET Sci. Meas. Technol., 2014, 8, (1), pp. 3038.
    22. 22)
      • 11. Ferrer, M., de Diego, M., Pinero, G., et al: ‘Active noise control over adaptive distributed networks’, Signal Process., 2015, 107, pp. 8295.
    23. 23)
      • 26. Das, D.P., Panda, G., Kuo, S.M.: ‘New block filtered-X LMS algorithms for active noise control systems’, IET Signal Process., 2007, 1, (2), pp. 7381.
    24. 24)
      • 30. Patel, V., Gandhi, V., Heda, S., et al: ‘Design of adaptive exponential functional link network-based nonlinear filters’, IEEE Trans. Circuits Syst. I, Reg. Papers, 2016, 63, (9), pp. 14341442.
    25. 25)
      • 17. Zecevic, Z., Krstajic, B., Radulovic, M.: ‘Frequency-domain adaptive algorithm for improving the active noise control performance’, IET Signal Process., 2015, 9, (4), pp. 349356.
    26. 26)
      • 32. Mandic, D.P., Chambers, J.A.: ‘Recurrent neural networks for prediction’ (John Wiley & Sons, New York, 2001).
    27. 27)
      • 3. Widrow, B., Stearns, S. D.: ‘Adaptive signal processing’ (Prentice-Hall, Englewood Cliffs, NJ, 1985).
    28. 28)
      • 1. Kuo, S.M., Morgan, D.R.: ‘Active noise control systems: algorithms and DSP Implementations’ (Wiley, New York, 1996).
    29. 29)
      • 4. Elliott, S.J., Stothers, S.J., Nelson, P.A.: ‘A multiple error LMS algorithm and its application to the active control of sound and vibration’, IEEE Trans. Acoust. Speech Signal Process., 1987, 35, (10), pp. 14231434.
    30. 30)
      • 18. Wu, L., Qiu, X.: ‘Active impulsive noise control algorithm with post adaptive filter coefficient filtering’, IET Signal Process., 2013, 7, (6), pp. 515521.
    31. 31)
      • 31. Mandic, D.P., Hanna, A.I., Razaz, M.: ‘A normalized gradient descent algorithm for nonlinear adaptive filters using a gradient adaptive step size’, IEEE Signal Process. Lett., 2001, 8, (11), pp. 295297.
    32. 32)
      • 8. Subudhi, B., Ray, P.K., Ghosh, S.: ‘Variable leaky least mean-square algorithm-based power system frequency estimation’, IET Sci. Meas. Technol., 2012, 6, (4), pp. 288297.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2017.0358
Loading

Related content

content/journals/10.1049/iet-spr.2017.0358
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading