Directional splitting of Gaussian density in non-linear random variable transformation
- Author(s): Jindřich Duník 1 ; Ondřej Straka 1 ; Benjamin Noack 2 ; Jannik Steinbring 2 ; Uwe D. Hanebeck 2
-
-
View affiliations
-
Affiliations:
1:
Faculty of Applied Sciences , University of West Bohemia , Univerzitní 8, Pilsen 306 14 , Czech Republic ;
2: Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology , Adenauerring 2, 76131 Karlsruhe , Germany
-
Affiliations:
1:
Faculty of Applied Sciences , University of West Bohemia , Univerzitní 8, Pilsen 306 14 , Czech Republic ;
- Source:
Volume 12, Issue 9,
December
2018,
p.
1073 – 1081
DOI: 10.1049/iet-spr.2017.0286 , Print ISSN 1751-9675, Online ISSN 1751-9683
- « Previous Article
- Table of contents
- Next Article »
Transformation of a random variable is a common need in a design of many algorithms in signal processing, automatic control, and fault detection. Typically, the design is tied to an assumption on a probability density function of the random variable, often in the form of the Gaussian distribution. The assumption may be, however, difficult to be met in algorithms involving non-linear transformation of the random variable. This paper focuses on techniques capable to ensure validity of the Gaussian assumption of the non-linearly transformed Gaussian variable by approximating the to-be-transformed random variable distribution by a Gaussian mixture (GM) distribution. The stress is laid on an analysis and selection of design parameters of the approximate GM distribution to minimise the error imposed by the non-linear transformation such as the location and number of the GM terms. A special attention is devoted to the definition of the novel GM splitting directions based on the measures of non-Gaussianity. The proposed splitting directions are analysed and illustrated in numerical simulations.
Inspec keywords: approximation theory; minimisation; Gaussian distribution; transforms
Other keywords: nonlinear random variable transformation; Gaussian distribution; directional splitting; Gaussian mixture distribution; design parameter selection; GM splitting directions; approximate GM distribution; Gaussian density; signal processing; numerical simulations; fault detection; probability density function; error minimisation; automatic control; to-be-transformed random variable distribution approximation
Subjects: Other topics in statistics; Optimisation; Probability theory, stochastic processes, and statistics; Other topics in statistics; Integral transforms in numerical analysis; Interpolation and function approximation (numerical analysis); Numerical approximation and analysis; Integral transforms in numerical analysis; Interpolation and function approximation (numerical analysis); Statistics; Optimisation techniques; Numerical analysis; Optimisation techniques
References
-
-
1)
-
4. Faubel, F., McDonough, J., Klakow, D.: ‘The split and merge unscented Gaussian mixture filter’, IEEE Signal Process. Lett., 2009, 16, (9), pp. 786–789.
-
-
2)
-
27. Hanebeck, U.D., Briechle, K., Rauh, A.: ‘Progressive Bayes: a new framework for nonlinear state estimation’. Proc. SPIE, AeroSense Symp., Orlando, Florida, 2003, vol. 5099, pp. 256–267.
-
-
3)
-
34. Stroud, A.H.: ‘Approximate calculation of multiple integrals’ (Prentice-Hall, Englewood Cliffs, NJ, 1971).
-
-
4)
-
14. Duník, J., Straka, O., Mallick, M., et al: ‘Survey of nonlinearity and non-Gaussianity measures for state estimation’. Proc. 19th Int. Conf. Information Fusion, Heidelberg, Germany, July 2016.
-
-
5)
-
26. Horwood, J.T., Aragon, N.D., Poore, A.B.: ‘Gaussian sum filters for space surveillance: theory and simulations’, J. Guid. Control Dyn., 2011, 34, (6), pp. 1839–1851.
-
-
6)
-
20. Straka, O., Duník, J., Šimandl, M.: ‘Structure adaptation of nonlinear filters based on non-Gaussianity measures’. Proc. 2015 American Control Conf., Chicago, IL, USA, 2015.
-
-
7)
-
5. Söderström, T.S., Stoica, P.G.: ‘System identification’ (Prentice Hall, 1989).
-
-
8)
-
3. Williams, J.L., Maybeck, P.S.: ‘Cost-function-based Gaussian mixture reduction for target tracking’. Proc. 6th Int. Conf. Information Fusion, Queensland, Australia, July 2003.
-
-
9)
-
45. Hyvärinen, A., Oja, E.: ‘Independent component analysis: algorithms and applications’, Neural Netw., 2000, 13, pp. 411–430.
-
-
10)
-
39. Duník, J., Straka, O., Šimandl, M., et al: ‘Random-point-based filters: analysis and comparison in target tracking’, IEEE Trans. Aerosp. Electron. Syst., 2015, 51, (2), pp. 303–308.
-
-
11)
-
8. Ding, S.X.: ‘Model-based fault diagnosis techniques: design schemes, algortihms and tools’ (Springer, London, 2008).
-
-
12)
-
37. Wu, Y., Hu, D., Wu, M., et al: ‘A numerical-integration perspective on Gaussian filters’, IEEE Trans. Signal Process., 2006, 54, (8), pp. 2910–2921.
-
-
13)
-
38. Steinbring, J., Hanebeck, U.D.: ‘LRKF revisited: The smart sampling Kalman filter (S2KF)’, J. Adv. Inf. Fusion, 2014, 9, (2), pp. 106–123.
-
-
14)
-
47. Kollo, T., Von Rosen, D.: ‘Advanced multivariate statistics with matrices’, (Springer, The Netherland, 2005).
-
-
15)
-
43. Groeneveld, R.A., Meeden, G.: ‘Measuring skewness and kurtosis’, J. R. Stat. Soc. D, Stat., 1984, 33, (4), pp. 391–399.
-
-
16)
-
46. Miller, M.B.: ‘Mathematics and statistics for financial risk management’ (Wiley, Hoboken, New Jersey, 2014).
-
-
17)
-
44. von Hippel, P.: ‘Skewness’, in Lovric, M. (Ed.): ‘International encyclopedia of statistical science’ (Springer, 2010).
-
-
18)
-
2. Sorenson, H.W., Alspach, D.L.: ‘Recursive Bayesian estimation using Gaussian sums’, Automatica, 1971, 7, pp. 465–479.
-
-
19)
-
22. Straka, O., Duník, J., Punčochář, I.: ‘Direcional splitting for structure adaptation of Bayesian filters’. Proc. American Control Conf., Boston, MA, USA, July 2016.
-
-
20)
-
10. DeMars, K.J., Bishop, R.H., Jah, M.K.: ‘Entropy-based approach for uncertainty propagation of nonlinear dynamical systems’, J. Guid. Control Dyn., 2013, 36, (4), pp. 1047–1057.
-
-
21)
-
11. Reif, K., Günther, S., Yaz, E., et al: ‘Stochastic stability of the discerete-time extended kalman filter’, IEEE Trans. Autom. Control, 1999, 44, (4), pp. 714–728.
-
-
22)
-
42. Mallick, M.: ‘Differential geometry measures of nonlinearity with applications to ground target tracking’. Proc. 7th Int. Conf. Information Fusion, Stockholm, Sweden, June 2004.
-
-
23)
-
16. Raitoharju, M., García-Fernández, A.F., Piché, R.: ‘Kullback – Leibler divergence approach to partitioned update Kalman filter’, Signal Process., 2017, 130, pp. 289–298.
-
-
24)
-
17. Terejanu, G., Singla, P., Singh, T., et al: ‘Uncertainty propagation for nonlinear dynamics systems using Gaussian sum mixture models’, J. Guid. Control Dyn., 2008, 31, (6), pp. 1623–1633.
-
-
25)
-
9. Gizda, D.R., Singla, P., Jah, M.K.: ‘An approach for nonlinear uncertainty propagation: application to orbital mechanics’. Proc. AIAA Guidance, Navigation, and Control Conf., Chicago, Illinois, August 2009.
-
-
26)
-
33. Cardoso, J.-F.: ‘Dependence, correlation and Gaussianity in independent component analysis’, J. Mach. Learn. Res., 2003, 4, pp. 1177–1203.
-
-
27)
-
7. Flídr, M., Straka, O., Šimandl, M.: ‘Pruning and merging strategies in receding horizon bicriterial dual controller with multiple linearization’. Proc. 19th Mediterranean Conf. Control & Automation, Corfu, Greece, June 2011.
-
-
28)
-
35. Nørgaard, M., Poulsen, N.K., Ravn, O.: ‘New developments in state estimation for nonlinear systems’, Automatica, 2000, 36, (11), pp. 1627–1638.
-
-
29)
-
48. Strang, G.: ‘Introduction to linear algebra’ (Wellesley-Cambridge Press, 2009, 4th edn.).
-
-
30)
-
1. Anderson, B.D.O., Moore, J.B.: ‘Optimal filtering’ (Prentice Hall, New Jersey, 1979).
-
-
31)
-
18. Terejanu, G., Singla, P., Singh, T., et al: ‘Adaptive Gaussian sum filter for nonlinear Bayesian estimation’, IEEE Trans. Autom. Control, 2011, 56, (9), pp. 2151–2156.
-
-
32)
-
25. Šmídl, V., Gašperin, M.: ‘Rao-Blackwellized point mass filter for reliable state estimation’. 16th Int. Conf. Information Fusion, Istanbul, Turkey, 2013.
-
-
33)
-
19. DeMars, K.J., Cheng, Y., Jah, M.K.: ‘Collision probability with Gaussian mixture orbit uncertainty’, J. Guid. Control Dyn., 2014, 37, (3), pp. 979–985.
-
-
34)
-
15. Raitoharju, M., Piché, R., Ala-Luhtala, J., et al: ‘Partitioned update Kalman filter’, J. Adv. Inf. Fusion, 2016, 11, (1), pp. 3–14.
-
-
35)
-
21. Raitoharju, M., Ali-Löytty, S., Piché, R.: ‘Binomial Gaussian mixture filter’, EURASIP J. Adv. Signal Proc., 2015, 36, pp. 1–18.
-
-
36)
-
32. Havlak, F., Campbell, M.: ‘Discrete and continuous probabilistic anticipation for autonomous robots in urban environments’, IEEE Trans. Robot., 2013, 30, (2), pp. 461–474.
-
-
37)
-
28. Couvreur, C.: ‘The EM algorithm: a guided tour’. Proc. Second IEEE European Workshop on Computer-Intensive Methods in Control and Signal Processing, Prague, Czech Republic, 1997, pp. 115–120.
-
-
38)
-
23. Sorenson, H.W., Alspach, D.L.: ‘Approximation of density function by a sum of gaussians for nonlinear Bayesian estimation’. Proc. 1st Symp. Nonlinear Estimation Theory and Its Applications, San Diego, 1970, pp. 88–90.
-
-
39)
-
6. Král, L., Šimandl, M.: ‘Neural network based bicriterial dual control with multiple linearization’. Proc. 10th IFAC Workshop on Adaptation and Learning in Control and Signal Processing, Antalya, Turkey, August 2010.
-
-
40)
-
40. Carreire-Perpinan, M.A.: ‘Mode-finding for mixtures of Gaussian distributions’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (11), pp. 1318–1323.
-
-
41)
-
13. Liu, Y., Li, X.R.: ‘Measure of nonlinearity for estimation’, IEEE Trans. Signal Process., 2015, 63, (9), pp. 2377–2388.
-
-
42)
-
36. Julier, S.J., Uhlmann, J.K.: ‘Unscented filtering and nonlinear estimation’, IEEE Rev., 2004, 92, (3), pp. 401–421.
-
-
43)
-
41. Golub, G.H., Van Loan, C.F.: ‘Matrix computations’ (The Johns Hopkins University Press, Baltimore and London, 1996, 3rd edn.).
-
-
44)
-
24. Schön, T., Gustafsson, F., Nordlund, P.: ‘Marginalized particle filters for mixed linear/nonlinear state-space models’, IEEE Trans. Signal Process., 2005, 53, (7), pp. 2279–2289.
-
-
45)
-
29. Faubel, F., Klakow, D.: ‘Further improvement of the adaptive level of detail transform: splitting in direction on the nonlinearity’. Proc. 18th European Signal Processing Conf., Aalborg, Denmark, August 2010.
-
-
46)
-
30. Huber, M.F.: ‘Adaptive Gaussian mixture filter based on statistical linearisation’. Proc. of the 14th Int. Conf. Information Fusion, Chicago, IL, USA, July 2011.
-
-
47)
-
12. Duník, J., Straka, O., Šimandl, M.: ‘Nonlinearity and non-Gaussianity measures for stochastic dynamic systems’. Proc. 16th Int. Conf. Information Fusion, Istanbul, 2013.
-
-
48)
-
31. Raitoharju, M., Ali-Löytty, S.: ‘An adaptive derivative free method for Bayesian posterior approximation’, IEEE Signal Process. Lett., 2012, 19, (2), pp. 87–90.
-
-
1)

Related content
