Non-linear system modelling based on NARX model expansion on Laguerre orthonormal bases

Non-linear system modelling based on NARX model expansion on Laguerre orthonormal bases

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a new representation of discrete Non-linear AutoRegressive with eXogenous inputs (NARX) model by developing its coefficients associated to the input, the output, the crossed product, the exogenous product and the autoregressive product on five independent Laguerre orthonormal bases. The resulting model, entitled NARX-Laguerre, ensures a significant parameter number reduction with respect to the NARX model. However, this reduction is still subject to an optimal choice of the Laguerre poles defining the five Laguerre bases. Therefore, the authors propose to use the genetic algorithm to optimise the NARX-Laguerre poles, based on the minimisation of the normalised mean square error. The performances of the resulting NARX-Laguerre model and the proposed optimisation algorithm are validated by numerical simulations and tested on the benchmark Continuous Stirred Tank Reactor.


    1. 1)
      • 1. Ding, F., Wang, F., Xu, L., et al: ‘Parameter estimation for pseudo-linear systems using the auxiliary model and the decomposition technique’, IET Control Theory Appl., 2017, 11, (3), pp. 390400.
    2. 2)
      • 2. Ding, F., Wang, X.: ‘Hierarchical stochastic gradient algorithm and its performance analysis for a class of bilinear-in-parameter systems’, Circuits Syst. Signal Process., 2017, 36, (4), pp. 13931405.
    3. 3)
      • 3. Ding, F., Wang, F., Xu, L., et al: ‘Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering’, J. Franklin Inst., 2017, 354, (3), pp. 13211339.
    4. 4)
      • 4. Taormina, R., wing Chau, K., Sethi, R.: ‘Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice Lagoon’, Eng. Appl. Artif. Intell., 2012, 25, (8), pp. 16701676.
    5. 5)
      • 5. Li, G., Wen, C., Li, Z.G., et al: ‘Model-based online learning with kernels’, IEEE Trans. Neural Netw. Learn. Syst., 2013, 24, (3), pp. 356369.
    6. 6)
      • 6. Ding, F., Duan, H.: ‘Two-stage parameter estimation algorithms for Box–Jenkins systems’, IET Signal Process., 2013, 7, (8), pp. 646654.
    7. 7)
      • 7. Cheng, C.M., Peng, Z.K., Zhang, W.M., et al: ‘Volterra-series-based nonlinear system modeling and its engineering applications: a state-of-the-art review’, Mech. Syst. Signal Process., 2017, 87, Part A, pp. 340364.
    8. 8)
      • 8. Hizir, N.B., Phan, M.Q., Betti, R., et al: ‘Identification of discrete-time bilinear systems through equivalent linear models’, Nonlinear Dyn., 2012, 69, (4), pp. 20652078.
    9. 9)
      • 9. Tong, S., Huo, B., Li, Y.: ‘Observer-based adaptive decentralized fuzzy fault tolerant control of nonlinear large-scale systems with actuator failures’, IEEE Trans. Fuzzy Syst., 2014, 22, (1), pp. 115.
    10. 10)
      • 10. Otazu, X., Vanrell, M., Párraga, C.A.: ‘Multiresolution wavelet framework models brightness induction effects’, Vis. Res., 2008, 48, (5), pp. 733751.
    11. 11)
      • 11. Mao, Y., Ding, F., Liu, Y.: ‘Parameter estimation algorithms for Hammerstein time-delay systems based on the orthogonal matching pursuit scheme’, IET Signal Process., 2017, 11, (3), pp. 265274.
    12. 12)
      • 12. Li, J., Zheng, W.X., Gu, J., et al: ‘Parameter estimation algorithms for Hammerstein output error systems using Levenberg-Marquardt optimization method with varying interval measurements’, J. Franklin Inst., 2017, 354, (1), pp. 316331.
    13. 13)
      • 13. Wang, D.Q., Liu, H.B., Ding, F.: ‘Highly efficient identification methods for dual rate Hammerstein systems’, IEEE Trans. Control Syst. Technol., 2015, 23, (5), pp. 19521960.
    14. 14)
      • 14. Xu, L., Ding, F.: ‘Parameter estimation algorithms for dynamical response signals based on the multi-innovation theory and the hierarchical principle’, IET Signal Process., 2017, 11, (2), pp. 228237.
    15. 15)
      • 15. Alireza, R., Scott, S.: ‘Identification of nonlinear systems using Narmax model’, Nonlinear Anal., Theory Methods Appl., 2009, 71, (12), pp. e1198e1202.
    16. 16)
      • 16. Ding, F., Chen, T., Iwai, Z.: ‘Adaptive digital control of Hammerstein nonlinear systems with limited output sampling’, SIAM J. Control Optim., 2007, 45, (6), pp. 22572276.
    17. 17)
      • 17. Ryozo, N., Jongeun, C.: ‘Parameter reduction in estimated model sets for robust control’, J. Dyn. Syst. Meas. Control, 2010, 132, (2), pp. 021002-1021002-10.
    18. 18)
      • 18. Nagamune, R., Choi, J.: ‘Parameter reduction of nonlinear least-squares estimates via nonconvex optimization’. 2008 American Control Conf., 2008, pp. 12981303.
    19. 19)
      • 19. Conway, R., Felix, S., Horowitz, R.: ‘Parametric uncertainty identification and model reduction for robust h2 synthesis for track-following in dual-stage hard disk drives’. 2007 American Control Conf., 2007, pp. 6875.
    20. 20)
      • 20. Li, W.X.Y., Xin, Y., Chan, R.H.M., et al: ‘Laguerre-Volterra model and architecture for mimo system identification and output prediction’. 2014 36th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, 2014, pp. 45394542.
    21. 21)
      • 21. Bouzrara, K., Mbarek, A., Garna, T.: ‘Non-linear predictive controller for uncertain process modelled by GOBF-Volterra models’, Int. J. Model. Identif. Control, 2013, 19, (4), pp. 307322.
    22. 22)
      • 22. Mbarek, A., Garna, T., Bouzrara, K., et al: ‘Reduced complexity Volterra model of non-linear miso system’, Int. J. Model. Identif. Control, 2012, 16, (2), pp. 134148.
    23. 23)
      • 23. Bouzrara, K., Garna, T., Ragot, J., et al: ‘Decomposition of an ARX model on Laguerre orthonormal bases’, ISA Trans., 2012, 51, (6), pp. 848860.
    24. 24)
      • 24. Garna, T., Bouzrara, K., Ragot, J., et al: ‘Optimal expansions of discrete time bilinear models using Laguerre functions’, IMA J. Math. Control Inf., 2013, 31, (3), pp. 313343.
    25. 25)
      • 25. Sarah, G., Garna, T., Bouzrara, K., et al: ‘Online identification of the bilinear model expansion on Laguerre orthonormal bases’, Int. J. Control, 2014, 87, (3), pp. 441463.
    26. 26)
      • 26. Mbarek, A., Bouzrara, K., Garna, T., et al: ‘Laguerre-based modelling and predictive control of multi-input multi-output systems applied to a communicating two-tank system (ctts)’, Trans. Inst. Meas. Control, 2017, 39, (5), pp. 611624.
    27. 27)
      • 27. Benabdelwahed, I., Mbarek, A., Bouzrara, K.: ‘Adaptive MPC based on MIMO ARX-Laguerre model’, ISA Trans., 2017, 67, pp. 330347.
    28. 28)
      • 28. Zulkeflee, S.A., Sata, S.A., Aziz, N.: ‘Nonlinear autoregressive with exogenous inputs based model predictive control for batch citronellyl laurate esterification reactor’, in Zheng, T. (Ed.): ‘Advanced model predictive control’ (InTech, Rijeka, 2011).
    29. 29)
      • 29. Karim, S., Morteza, H.: ‘A novel online affine model identification of multivariable processes using adaptive neuro-fuzzy networks’, Chem. Eng. Res. Des., 2010, 88, (2), pp. 155169.

Related content

This is a required field
Please enter a valid email address